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Inflation & Reheating
Inflation 

     - solves flatness / homogeneity / monopole problems 

     - predicts small density fluctuations → seeds of  galaxies 

Reheating  

     - Vaccum energy of  the inflaton must be converted to  

        radiation at the end of  inflation  

       (and the radiation must be thermalized before BBN)



Inflaton must be coupled at least gravitatonally to other particles.  

     Other particles are produced through the oscillation of  the scale factor,  

     though such interactions are Planck-suppressed. 

       e.g.  

Initially studied in the context of  Starobinsky type inflation 

In this talk I focus on gravitational particle production in 

Gravitational particle production
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[ A.A.Starobinsky “Quantum Gravity”(Plemun Press, New York, 1982),  

A. Vilenkin, PRD32(1985) / M.B.Mijic et al., PRD34(1986)...]
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Motivations 

  

- Standard theory of  gravity

        (Einstein gravity)R

- Even in this simplest example, gravitational effects

   give nonnegligible consequences in the present universe

- However, graviton production seems inefficient in the Einstein frame

- Naively, efficient particle production (especially graviton prod.) is expected

f(�)R

oscillation →       oscillation →       oscillation → particle production

graviton production

f(�)R f(�)R H
→

Gravitational particle production

- Prediction differs among the literature [ G. Segre et al., PRL62 (1989) ]
[ Y. Watanabe, E. Komatsu, PRD75(2007)061301 ]



Setup  :  Einstein gravity + minimal scalar + matter 

  

Background EOM 

Gravitational effect in Einstein gravity
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Averaged evolution of  the Hubble parameter 
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Inflation Inflaton oscillation

Typical timescale ⇠ H�1

[ L.H. Ford,  
PRD35 (1987) 2955 ]

Gravitational effect in Einstein gravity
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Non-averaged evolution of  the Hubble parameter 

                       
There must be oscillation mode  
with timescale
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Extraction of  the oscillation mode 

  

Gravitational effect in Einstein gravity

Friedmann eq.  : 3M2
PH
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See also [ B. A. Bassett et al.,  
Phys.Rev. D58 (1998) 021302,  
Phys.Rev. D60 (1999) 049902 ] 
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Extraction of  the oscillation mode 

  

Gravitational effect in Einstein gravity

Friedmann eq.  : 3M2
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“Gravitational annihilation”
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-  Matter action (for canonical scalar field)

See also [ B. A. Bassett et al.,  
Phys.Rev. D58 (1998) 021302,  
Phys.Rev. D60 (1999) 049902 ] 
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Cosmological consequences 

Gravitational effect in Einstein gravity
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Negligible contribution to present (dark) radiation

  Can be DM / Lower bound on      abundance�

- Massive scalar production :

- Massless scalar & graviton production

[ Y. Ema, RJ, K. Mukaida, K. Nakayama,  
JCAP1505(2015) / 1502.02475 ]
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Setup 

Extraction of  the oscillation mode 
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Since we need Einstein gravity after     settles down, we require�

“Adiabatic invariant”                    is useful in extracting the oscillation mode LH =
@L
@H

(→ next slide)

Gravitational effect in           theory



Adiabatic invariant 

- In models of  extended gravity (e.g. Generalized Galileon theories), 

   various quentities (denoted by      here / including the Hubble parameter)  

   oscillate with the timescale of  the inflaton oscillation : Q̇ ⇠ m�Q

f(�)R

- However, there exists “adiabatic invariant”                . 

   For a Lagrangian                           , the invariant is given byL = L(H,�, �̇)

Q̇ ⇠ HQ
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Adiabatic invariant 

f(�)R

- In models of  extended gravity (e.g. Generalized Galileon theories), 

   various quentities (including the Hubble parameter) oscillate with  

   the timescale of  the inflaton oscillation : Q̇ ⇠ m�Q

- However, there exists “adiabatic invariant”                . 

   For a Lagrangian                           , the invariant is given byL = L(H,�, �̇)

Q̇ ⇠ HQ
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Extraction of  the oscillation mode (cont.) 

f(�)R
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- The adiabatic invariant has almost no oscillation
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Extraction of  the oscillation mode (cont.) 

f(�)R
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- The adiabatic invariant has almost no oscillation

Decomposing H = H̄ + �H we have

→

- We can derive the inflaton-matter coupling through gravity
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Gravitational effect in           theory
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“Gravitational decay”



Gravitational effect in           theory
Cosmological consequences 

f(�)R

- Scalar
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In Einstein gravity 

Summary

- Gravitational particle production is nonnegligible

- Scalar production can be efficient (to complete reheating)

- “Adiabatic invariant” may be useful in extracting the oscillation mode  

   of  the Hubble parameter and in estimating particle production

In           theoryf(�)R

- However, graviton production is inefficient

In addition

(Produced massive scalar particles can be DM)
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Derivation of   

                       

Gravitational effect in Einstein gravity
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Rough estimation of  the decay rate 
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-  Assume daughter mass oscillates with ratio q compared to parent mass

-  This causes interaction term in Lagrangian

-  Then, decay rate is
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Rough estimation of  the decay rate 

     

                                            

-  Example
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Action 

                       

EOM 

Rough sketch of  the proof  of  adiabaticity

: Friedmann eq.

: 2nd. Friedmann eq.

: Inflaton EOM

HLH ⇠ LIf  holds (and in fact this holds in most cases), 

(LH)· ⇠ HLHLH becomes an adiabatic invariant since
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