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For 2-point correlation functions = We have to go beyond Newtonian gravity!

For 3-point correlation functions = We have to go beyond Newtonian gravity
and beyond linear theory!



Geodesic light-cone coordinates

An adapted light-cone coordinate system x* = (w, 7, 673), a=1,2canbe
defined by the following metric (Gasperini, GM, Nugier, Veneziano (2011)):

ds? = T2dw? — 2T dwdr + yap(d6% — UPdw)(d6® — UPdw) ; ab=1,2.

This metric depends on six arbitrary functions (T, the two-dimensional vector
U? and the symmetric tensor v,) and is completely gauge fixed.

wis a null coordinate , 0,7 defines a geodesic flow

k* = g"vd,w = g"" = —8“T " null geodesics connecting sources and
observer
!

Photons travel at constant w and 62
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The exact non-perturbative redshift is given by

(k"u.)s  (0"WduT)s  T(Wo,To,0?)
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where the subscripts “0” and “s” denote, respectively, a quantity evaluated at
the observer and source space-time position.

1+Zs:



Galaxy Number Counts

Galaxy Number Counts= number N of sources (galaxies) per solid angle and
redshift.
The fluctuation of the galaxy number counts in function of observed redshift

and direction is given by
_ N(n,2) - (N)(2)
A(n,z)= — NG

where

N(n,z)=p(n,z) V(n,z).
Considering the density and volume fluctuations per redshift bin dz and per
solid angle dQ2
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we can give the directly observed number fluctuations
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Volume Perturbation

The 3-dimensional volume element dV seen by a source with 4-velocity u* is
dV = \/=geuvapttdx”dx“ax” .
In terms of the observed quantities (z, 6o, ¢o)

Ax” Ax™ x® |9 (6s, ds)
. _ 143 Z\Tory e/
AV = V= Geuwasl S 50, 06s | D (Goto)

Going to GLC we then have

av = f\/fguW%dzdagdqso.

azdbodoo = v (2,00, do) dzdOodd, .

and
dr

av = 7l (_%) dzdfedde,  of  v=+/P (_E>

This is a non-perturbative expression for the volume element at the source in
terms of the observed redshift and the observation angles in GLC gauge.
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azdbodoo = v (2,00, do) dzdOodd, .

Going to GLC we then have

av = ﬂ/fgu”’%dzdegdqso.

and

d d
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This is a non-perturbative expression for the volume element at the source in
terms of the observed redshift and the observation angles in GLC gauge.

If we would know p(n, z) non-perturbatively we could write the number
counts in an exact way in GLC.



Coordinates Trasformation

Let us consider a stochastic background of scalar perturbations on a
conformally flat FLRW space-time to describe the inhomogeneities of our
Universe at large scale.

Using spherical coordinates (y* = (n, r, 6, ¢)) in the Poisson gauge (PG) we
have

nZ

gis = a~?(n) diag (—1 F20,1+2W, (1 + 2w)ygb)
where & = diag (r‘z, r~2sin=2 9), ® =1+ 1¢® —2¢% and
V=g + Jp@ 4 2¢2
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where & = diag (r‘z, r~2sin=2 9), ® =1+ 1¢® —2¢% and

V=g + Jp@ 4 2¢2

To use the previous results we have to re-express this metric in GLC form.
We define the coordinates transformation using

> oxP ox° .,
96c(X) = dyr oy” Ihe(Y)

and imposing the following boundary conditions

@ Non-singular transformation around the observer position at r = 0.

@ The two-dimensional spatial section r = const is locally parametrized at
the observer position by standard spherical coordinates.



Cosmological Observables: redshift

The redshift up to second order in perturbation theory is

a(no) >
1+z= a(n) [1+6 z+5()z]
with
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Ben-Dayan, GM, Nugier, Veneziano (2012), Fanizza, Gasperini, GM, Veneziano (2013) and GM (2015)
(see also Umeh, Clarkson, Maartens (2014))



Cosmological Observables

To obtain A in the PG, in function of the observed redshift and of the direction
of observation (6o, ¢o), we have:



Cosmological Observables

To obtain A in the PG, in function of the observed redshift and of the direction
of observation (6o, ¢o), we have:

Step 1 — Expand the exact expression of A in function of the PG coordinate
using the coordinate transformation.



Cosmological Observables

To obtain A in the PG, in function of the observed redshift and of the direction
of observation (6o, ¢o), we have:

Step 1 — Expand the exact expression of A in function of the PG coordinate
using the coordinate transformation.

Step 2 — Expand conformal time and radial PG coordinates around a fiducial
model as s = 7\ + " + 7 0 (@) : :
ns=mns +ns +ns andrs=rs’ +rs’ +rs’ perturbatively solving

a(no) _ alno)

1+zs = =
Tam®)  ans)

[1 +5(1)Z+5(2)Z} o Wo = 040 — Oy @



Cosmological Observables

To obtain A in the PG, in function of the observed redshift and of the direction
of observation (6o, ¢o), we have:

Step 1 — Expand the exact expression of A in function of the PG coordinate
using the coordinate transformation.

Step 2 — Expand conformal time and radial PG coordinates around a fiducial
_ 0 (1) (2) _ .0 (1) (2) ; i
modelasns =ns’ +1ns’' +ns’ andrs =15’ +rs’ + 15’ perturbatively solving
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Step 3 — Taylor expand the solution of Step 1 around the fiducial model
using Step 2, and around the direction of observation using the fact that
6% = 02 are constant along the line-of-sight and therefore

Mo Mo
0" =60 6% — 63~ 2 [ i/ 0 [ (om0~ 1", 65).
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Galaxy Number Counts

The (second-order, non-homogeneous, non-averaged) expression of A in our
perturbed background is so given (in a concise form) by

A = AN, z) + AP (n, z5)

To first order we have (Yoo, Fitzpatrick, Zaldarriaga (2009), Yoo (2010),
Bonvin, Durrer (2011), Challinor, Lewis (2011))

1 2 H
Y(n,z) = (,Hr() H2)(8,v + +2/ dro, v’ > w(®

14V, — 2k 4 — (a y +8,2v(”) + 60

with

2 (1@ "(2) _
Vi(n,z) = @/0 df\U(1)(f) , 2k = —Qotp = 2/0 dfr(rz()z)rrAz\ll(”(r)



Galaxy Number Counts

Keeping only the leading (potentially observables) terms the number counts
to second order turns to be

AP —v@ _ <):(2)>

where
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Galaxy Number Counts: some leading terms

Among the leading (potentially observable) terms, we can isolate the
following three contributions

6® Second order density
(ﬁa >6f,1) Redshift space distortion - density
S
o
[_%/ dn ’Z 5 poyp (') |8 Lensing - density
Ns o

These are some of the most relevant terms in the galaxy number counts
reduced bispectrum.



Reduced bispectrum number counts

We define the bispectrum in real space as
B(ni,nz2,n3, 21,22, 23) = (A (N1, 21) A (N2, 22) A (ng, 23))

Expanding the direction dependence of A in spherical harmonics

B(ni,n2,ng,21,22,23) = B2 (21, 22, 28) Yeymy (M) Yepmy (N2) Yegmy (M3)

Lj,m
and
My Mz M3 __ M™,mz,m3
By oyiy (21,22,28) = Gy, % by .05(21, 22, 25)
with
my,mz,ms i
Go, byt Gaunt integral

by ,05(21, 22, Z3) Reduced bispectrum



Reduced bispectrum number counts

3.x10°8 25x10°8
25x1078 2.x10-8
-8
o 210 _© 15x108
] 2%
£5 15x10°8 B
) s & 1.x10°®
1.x 10
-9
5% 109 5:x10
0 A 0 A
06 07 98 1010, 00 10 06 0.7 08 0.9 10
L X T T T
Z3 Z3
3.x107%°
o
23 2x1010
o)
|
1.x107%0
0 L L L
0.2 04 0.6 08 10
Z3

We plot the contribution bg’;, ., (upper left panel), b7’ (upper right panel),
—bj%%,, (bottom panel) to the bispectrum for z; = z, = 0.8 as a function of z3

for different values of ¢4 = ¢> = ¢3/2 (3 red, 103 orange, etc.).



Reduced bispectrum number counts

Preliminary!
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We show the contributions to the reduced bispectrum from the Newtonian
terms (blue), the Newtonian xlensing terms (yellow) and the pure lensing
terms (green) for zy = 0.95, z; = 1 and z; = 1.05 (left panel), and for

z1 =0.9, 2z =1and z; = 1.1 (right panel), as a function of

L=ty =Ll ={3/2.
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@ In the framework of the GLC we can write LSS observables in an exact,
non-perturbative way.

@ We have show the leading perturbative expressions for the number
counts at second order as a function of the observed redshift and the
direction of the observation.

@ We have defined the number counts reduced bispectrum in the directly
observable spherical-harmonics-redshift space.

@ In particular configurations the integrated relativistic terms can
dominate the signal/be not negligible
o Well separated redshifts.
e Broad window functions.

Outlook: Evaluation of the signal-to-noise to investigate whether planed
surveys can detect the lensing signal when it dominates.



THANKS FOR THE ATTENTION!



Coordinates Trasformation

Les us introduce the following auxiliary quantities:

n n_ R
Paro) = [ a8 vt ron Q-0 = [ acdne )
Nin Mo

where n+ = n £+ r. We then obtain
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Coordinates Trasformation

The non-trivial entries of the GLC metric are then given by

- ﬁ (1 +0:Q—,P+o,w® + 1(6n — 97 —49,Q — ¢®
+2u? — 9,P8,Q — 200,P — yobaaPabo)
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Reduced bispectrum number counts

We plot the contributions of b7, (up left), by’0,., (up right), —bg’7,.

(bottom) to the bispectrum for zi = zo = z; = z as a function of z for different
¢ =1¢1 =4 ={3/2 (3 red, 103 orange, 203 green, 303 blue, 403 brown).
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We plot the contributions of 26770,,, (up left), (b’ (up right), —¢2bg?}

(bottom) to the bispectrum for different zy = zo = z3 = z (z = 0.6 red,
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Reduced bispectrum number counts: redshift bin
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We show the effect of a very large redshift bin, for which the bispectrum is
integrated from Zmin = 0.2 to Zmax = 3, for a fix £3 = 3 while varying

¢ = {1 = £>. We plot the density (blue), redshift space distortions (red) and
lensing (magenta) contributions. Dashed lines correspond to negative values.



