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What are LSS surveys really observing?

All observations are made on our past light-cone⇒We do not observe
3 spatial dimensions, but 2 spatial and one light-like.

The measured redshift is perturbed by peculiar velocities and by the
gravitational potential.

The observed volume is distorted.

Direction of observation 6= angular direction of the source.

We have distorted observable coordinates (redshift and incoming
photons direction)⇒ Relativistic effects!

For 2-point correlation functions⇒We have to go beyond Newtonian gravity!

For 3-point correlation functions⇒We have to go beyond Newtonian gravity
and beyond linear theory!
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Geodesic light-cone coordinates
An adapted light-cone coordinate system xµ = (w , τ, θ̃a), a = 1, 2 can be
defined by the following metric (Gasperini, GM, Nugier, Veneziano (2011)):

ds2 = Υ2dw2 − 2Υdwdτ + γab(d θ̃a −Uadw)(d θ̃b −Ubdw) ; a, b = 1, 2 .

This metric depends on six arbitrary functions (Υ, the two-dimensional vector
Ua and the symmetric tensor γab) and is completely gauge fixed.

w is a null coordinate , ∂µτ defines a geodesic flow

kµ = gµν∂νw = gµw = −δµτ Υ−1 null geodesics connecting sources and
observer ⇓

Photons travel at constant w and θ̃a

The exact non-perturbative redshift is given by

1 + zs =
(kµuµ)s

(kµuµ)o
=

(∂µw∂µτ)s

(∂µw∂µτ)o
=

Υ(wo, τo, θ̃
a)

Υ(wo, τs, θ̃a)

where the subscripts “o” and “s” denote, respectively, a quantity evaluated at
the observer and source space-time position.
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Galaxy Number Counts
Galaxy Number Counts= number N of sources (galaxies) per solid angle and
redshift.
The fluctuation of the galaxy number counts in function of observed redshift
and direction is given by

∆ (n, z) ≡ N (n, z)− 〈N〉 (z)

〈N〉 (z)
,

where
N (n, z) = ρ (n, z) V (n, z) .

Considering the density and volume fluctuations per redshift bin dz and per
solid angle dΩ

V (n, z) = V̄ (z)

(
1 +

δV (1)

V̄
+
δV (2)

V̄

)
ρ (n, z) = ρ̄ (z)

(
1 + δ(1) + δ(2)

)
,

we can give the directly observed number fluctuations

∆ (n, z) =

[
δ(1) +

δV (1)

V̄
+ δ(1)

δV (1)

V̄
+ δ(2) +

δV (2)

V̄
− 〈δ(1) δV

(1)

V̄
〉 − 〈δ(2)〉 − 〈δV

(2)

V̄
〉
]



Volume Perturbation
The 3-dimensional volume element dV seen by a source with 4-velocity uµ is

dV =
√
−gεµναβuµdxνdxαdxβ .

In terms of the observed quantities (z, θo, φo)

dV =
√
−gεµναβuµ

∂xν

∂z
∂xα

∂θs

∂xβ

∂φs

∣∣∣∣∂ (θs, φs)

∂ (θoφo)

∣∣∣∣ dzdθodφo ≡ v (z, θo, φo) dzdθodφo .

Going to GLC we then have

dV = −
√
−guw ∂τ

∂z
dzdθodφo .

and

dV =
√
|γ|
(
−dτ

dz

)
dzdθodφo , or v =

√
|γ|
(
−dτ

dz

)
This is a non-perturbative expression for the volume element at the source in
terms of the observed redshift and the observation angles in GLC gauge.

If we would know ρ(n, z) non-perturbatively we could write the number
counts in an exact way in GLC.
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Coordinates Trasformation
Let us consider a stochastic background of scalar perturbations on a
conformally flat FLRW space-time to describe the inhomogeneities of our
Universe at large scale.

Using spherical coordinates (yµ = (η, r , θ, φ)) in the Poisson gauge (PG) we
have

gµνNG = a−2(η) diag
(
−1 + 2Φ, 1 + 2Ψ, (1 + 2Ψ)γab

0

)
where γab

0 = diag
(

r−2, r−2 sin−2 θ
)

, Φ = ψ + 1
2φ

(2) − 2ψ2 and

Ψ = ψ + 1
2ψ

(2) + 2ψ2.

To use the previous results we have to re-express this metric in GLC form.
We define the coordinates transformation using

gρσGLC(x) =
∂xρ

∂yµ
∂xσ

∂yν
gµνNG(y)

and imposing the following boundary conditions

Non-singular transformation around the observer position at r = 0.
The two-dimensional spatial section r = const is locally parametrized at
the observer position by standard spherical coordinates.
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Cosmological Observables: redshift
The redshift up to second order in perturbation theory is

1 + z =
a(ηo)

a(ηs)

[
1 + δ(1)z + δ(2)z

]
with

δz(1) = −v||s − ψs − 2
∫ ηo

ηs
dη′∂η′ψ

(
η
′
)

δz(2) = −v(2)
||s −

1

2
φ
(2)
s −

1

2

∫ η0

ηs
dη′∂η′

[
φ
(2) + ψ(2)

](
η
′
)
+

1

2

(
v||s
)2

+
1

2
(ψs)

2

+
(
−v||s − ψs

)(
−ψs − 2

∫ ηo

ηs
dη′∂η′ψ

(
η
′
))

+
1

2
va
⊥sv⊥a s + 2a va

⊥s∂a

∫ ηo

ηs
dη′ψ

(
η
′
)

+4
∫ η0

ηs
dη′

[
ψ
(
η
′
)
∂η′ψ

(
η
′
)
+ ∂η′ψ

(
η
′
) ∫ ηo

η′
dη′′∂η′′ψ

(
η
′′
)

+ψ
(
η
′
) ∫ ηo

η′
dη′′∂2

η′′ψ
(
η
′′
)
− γab

0 ∂a

(∫ ηo

η′
dη′′ψ

(
η
′′
))

∂b

(∫ ηo

η′
dη′′∂η′′ψ

(
η
′′
))]

+2∂a
(

v||s + ψs
) ∫ ηo

ηs
dη′γab

0 ∂b

∫ ηo

η′
dη′′ψ

(
η
′′
)

+4
∫ ηo

ηs
dη′∂a

(
∂η′ψ

(
η
′
))∫ ηo

η′
dη′′γab

0 ∂b

∫ ηo

η′′
dη′′′ψ

(
η
′′′
)

Ben-Dayan, GM, Nugier, Veneziano (2012), Fanizza, Gasperini, GM, Veneziano (2013) and GM (2015)
(see also Umeh, Clarkson, Maartens (2014))



Cosmological Observables

To obtain ∆ in the PG, in function of the observed redshift and of the direction
of observation (θo, ϕo), we have:

Step 1→ Expand the exact expression of ∆ in function of the PG coordinate
using the coordinate transformation.

Step 2→ Expand conformal time and radial PG coordinates around a fiducial
model as ηs = η

(0)
s + η

(1)
s + η

(2)
s and rs = r (0)s + r (1)s + r (2)s perturbatively solving

1+zs =
a(ηo)

a(η
(0)
s )

=
a(ηo)

a(ηs)

[
1 + δ(1)z + δ(2)z

]
, wo = η

(0)
s +r (0)s = w (0)+w (1)+w (2)

Step 3→ Taylor expand the solution of Step 1 around the fiducial model
using Step 2, and around the direction of observation using the fact that
θ̃a = θa

o are constant along the line-of-sight and therefore

θa = θa(0) + θa(1) = θa
o − 2

∫ ηo

η
(0)
s

dη′ γab
0 ∂b

∫ ηo

η′
dη′′ ψ(η′′, ηo − η′′, θa

o) .
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Galaxy Number Counts

The (second-order, non-homogeneous, non-averaged) expression of ∆ in our
perturbed background is so given (in a concise form) by

∆ = ∆(1)(n, zs) + ∆(2)(n, zs)

To first order we have (Yoo, Fitzpatrick, Zaldarriaga (2009), Yoo (2010),
Bonvin, Durrer (2011), Challinor, Lewis (2011))

∆(1) (n, z) =

(
2

Hr(z)
+
H′

H2

)(
∂r v (1) + Ψ(1) + 2

∫ r(z)

0
dr∂ηΨ(1)

)
−Ψ(1)

+4Ψ1 − 2κ+
1
H

(
∂ηΨ(1) + ∂2

r v (1)
)

+ δ(1)

with

Ψ1(n, z) =
2

r(z)

∫ r(z)

0
drΨ(1)(r) , 2κ = −∆2ψ = 2

∫ r(z)

0
dr

r(z)− r
r(z)r

∆2Ψ(1)(r)



Galaxy Number Counts

Keeping only the leading (potentially observables) terms the number counts
to second order turns to be

∆(2) = Σ(2) − 〈Σ(2)〉

where

Σ(2)(n, z) = δ(2) +H−1∂2
r v (2) − 2κ(2) +H−2

(
∂2

r v
)2

+H−2∂r v∂3
r v

+H−1
(
∂r v∂rδ + ∂2

r v δ
)
− 2δκ+∇aδ∇aψ

+H−1
[
−2(∂2

r v)κ+∇a(∂2
r v)∇aψ

]
+ 2κ2 − 2∇bκ∇bψ

− 1
2r(z)

∫ r(z)

0
dr

r(z)− r
r

∆2

(
∇bΨ1∇bΨ1

)
− 2

∫ r(z)

0

dr
r
∇aΨ1∇aκ .

with

κ(2) =
1
2

∫ r(z)

0
dr

r(z)− r
r(z)r

∆2(Ψ + Φ)(2)(−rn, η0 − r) .



Galaxy Number Counts: some leading terms

Among the leading (potentially observable) terms, we can isolate the
following three contributions

δ(2)
ρ Second order density

(
1
Hs

∂2
r v
)
δ(1)
ρ Redshift space distortion - density

[
− 2

rs

∫ ηo

ηs

dη′ η
′ − ηs

ηo − η′ ∆2ψ
(
η′)]δ(1)

ρ Lensing - density

These are some of the most relevant terms in the galaxy number counts
reduced bispectrum.



Reduced bispectrum number counts

We define the bispectrum in real space as

B (n1,n2,n3, z1, z2, z3) = 〈∆ (n1, z1) ∆ (n2, z2) ∆ (n3, z3)〉

Expanding the direction dependence of ∆ in spherical harmonics

B (n1,n2,n3, z1, z2, z3) =
∑
`i ,mi

Bm1m2m3
`1`2`3

(z1, z2, z3)Y`1m1 (n1)Y`2m2 (n2)Y`3m3 (n3)

and
Bm1m2m3
`1`2`3

(z1, z2, z3) = Gm1,m2,m3
`1,`2,`3

b`1,`2,`3 (z1, z2, z3)

with
Gm1,m2,m3
`1,`2,`3

Gaunt integral

b`1,`2,`3 (z1, z2, z3) Reduced bispectrum



Reduced bispectrum number counts
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We plot the contribution bδδδ`1`2`3
(upper left panel), bvδδ

`1`2`3
(upper right panel),

−bLδδ
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(bottom panel) to the bispectrum for z1 = z2 = 0.8 as a function of z3

for different values of `1 = `2 = `3/2 (3 red, 103 orange, etc.).



Reduced bispectrum number counts

Preliminary!
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We show the contributions to the reduced bispectrum from the Newtonian
terms (blue), the Newtonian×lensing terms (yellow) and the pure lensing
terms (green) for z1 = 0.95, z2 = 1 and z3 = 1.05 (left panel), and for
z1 = 0.9, z2 = 1 and z3 = 1.1 (right panel), as a function of
` = `1 = `2 = `3/2.



Conclusions

We have presented the geodesic light-cone coordinates, a coordinate
system adapted to an observer and his past light-cone.

In the framework of the GLC we can write LSS observables in an exact,
non-perturbative way.

We have show the leading perturbative expressions for the number
counts at second order as a function of the observed redshift and the
direction of the observation.

We have defined the number counts reduced bispectrum in the directly
observable spherical-harmonics-redshift space.

In particular configurations the integrated relativistic terms can
dominate the signal/be not negligible

Well separated redshifts.
Broad window functions.

Outlook: Evaluation of the signal-to-noise to investigate whether planed
surveys can detect the lensing signal when it dominates.
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Coordinates Trasformation

Les us introduce the following auxiliary quantities:

P(η, r , θa) =

∫ η

ηin

dη′
a(η′)

a(η)
ψ(η′, r , θa) , Q(η+, η−, θ

a) =

∫ η−

ηo

dx ψ̂(η+, x , θa) ,

where η± = η ± r . We then obtain

τ = τ (0) + τ (1) + τ (2)

≡

(∫ η

ηin

dη′a(η′)

)
+a(η)P+

∫ η

ηin

dη′
a(η′)

2

[
φ(2)−ψ2 +(∂r P)2 +γab

0 ∂aP ∂bP
]
(η′, r , θa) ,

w = w (0) + w (1) + w (2)

≡ η+ + Q +
1
4

∫ η−

ηo

dx
[
ψ̂(2) + φ̂(2) + 4ψ̂∂+Q + γ̂ab

0 ∂aQ ∂bQ
]

(η+, x , θa)

θ̃a = θ̃a(0) + θ̃a(1) + θ̃a(2) ≡ θa +
1
2

∫ η−

ηo

dx
[
γ̂ab

0 ∂bQ
]

(η+, x , θa) +

∫ η−

ηo

dx
[

1
2
γac

o ∂cw (2)

+ψ̂
(
γac

o ∂cw (1) + ∂+θ̃
a(1)
)
− ∂+w (1)∂−θ̃

a(1) +
1
2
γdc

o ∂d w (1)∂c θ̃
a(1)
]

(η+, x , θa)



Coordinates Trasformation

The non-trivial entries of the GLC metric are then given by

Υ−1 =
1

a(η)

(
1 + ∂+Q − ∂r P + ∂ηw (2) +

1
a

(∂η − ∂r )τ
(2) − ψ∂ηQ − φ(2)

+2ψ2 − ∂r P∂r Q − 2ψ∂r P − γab
0 ∂aP∂bQ

)
Ua = ∂η θ̃

a(1) − 1
a
γab

0 ∂bτ
(1) + ∂η θ̃

a(2) − 1
a
γab

0 ∂bτ
(2) − 1

a
∂rτ

(1)∂r θ̃
a(1) − ψ

(
∂η θ̃

a(1)

+
2
a
γab

0 ∂bτ
(1)
)
− 1

a
γcd

0 ∂cτ
(1)∂d θ̃

a(1) + (∂+Q − ∂r P)

(
−∂η θ̃a(1)+

1
a
γab

0 ∂bτ
(1)
)
,

a(η)2γab = γab
0 (1 + 2ψ) +

[
γac

0 ∂c θ̃
b(1) + (a↔ b)

]
+ γab

0

(
ψ(2) + 4ψ2

)
− ∂η θ̃a(1)∂η θ̃

b(1)

+∂r θ̃
a(1)∂r θ̃

b(1) + 2ψ
[
γac

0 ∂c θ̃
b(1) + (a↔ b)

]
+ γcd

0 ∂c θ̃
a(1)∂d θ̃

b(1)

+
[
γac

0 ∂c θ̃
b(2) + (a↔ b)

]
.



Reduced bispectrum number counts
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We plot the contributions of bδδδ`1`2`3
(up left), bvδδ

`1`2`3
(up right), −bLδδ

`1`2`3
(bottom) to the bispectrum for z1 = z2 = z3 = z as a function of z for different
` = `1 = `2 = `3/2 (3 red, 103 orange, 203 green, 303 blue, 403 brown).



Reduced bispectrum number counts
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We plot the contributions of `2bδδδ`1`2`3
(up left), `2bvδδ

`1`2`3
(up right), −`2bLδδ

`1`2`3
(bottom) to the bispectrum for different z1 = z2 = z3 = z (z = 0.6 red,
z = 0.7 orange, z = 0.8 green, z = 0.9 blue, z = 1 brown) as a function of
`1 = `2 = `3/2 = `.



Reduced bispectrum number counts: redshift bin

0 200 400 600 800

1 ´ 10
-9

2 ´ 10
-9

5 ´ 10
-9

1 ´ 10
-8

2 ´ 10
-8

5 ´ 10
-8

1 ´ 10
-7

2 ´ 10
-7

{

{
2

b
{ 1

{ 2
{ 3

W

We show the effect of a very large redshift bin, for which the bispectrum is
integrated from zmin = 0.2 to zmax = 3, for a fix `3 = 3 while varying
` = `1 = `2. We plot the density (blue), redshift space distortions (red) and
lensing (magenta) contributions. Dashed lines correspond to negative values.


