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  Brief History of Universe 
Years since 
the Big Bang 

 
~300000 
(z~1000) 

 
 
 
 
 
 

~100 million 
(z~20-40) 

 
 
 
 
 
 
 
 
 
 

~1 billion 
(z~6) 

 
 
 
 
 

~13 billion 
(z=0) 

ß  Big Bang:  
 the Universe is filled with ionized gas 
ß Recombination:The gas cools and becomes neutral 

 ß The first structures begin to form. 
 
 
      Reionization starts (z ~12) 

ß Reionization is complete  

ß Today’s structures 

Dark Ages	
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Progress in Radio Technology

• Increase in receiving area and 
sensitivity

• But more importantly, revolution in 
digital electronics! In optical 
astronomy, this is the application of 
CCD

• The trend of large N (number of 
elements), small D (aperture) array

• There will be comparable progress in 
radio astronomy 

South	  Africa-‐	  Karoo	  
Australia-‐	  Western	  Outback	  
	  
	  ConstrucYon	  2017-‐2023,	  Early	  Science	  2020-‐,	  Full	  Science	  2023-‐2028	  
Cost:	  ~650	  M	  Euros,	  	  	  OperaYon	  ~	  50	  M	  Euros	  per	  year.	  
	  
Pathfinders	  for	  SKA:	  	  
GMRT(2010),	  LOFAR(2010),PAPER(2011),MWA(2011),SKA(2020)	  
	  
	

Square	  Kilometer	  Array	  



Kenji	  Kadota	  (IBS)	 Cosmo	  2015	 5	

4

FIG. 1: The scales probed by cosmic microwave background anisotropies (solid line) and cosmic 21-cm fluctuations (dashed
line). The two power spectra have been aligned using the small-scale relation k ≃ l/dA(zCMB), where dA(zCMB) ≃ 13.6 Gpc is
the comoving angular diameter distance at the surface of recombination in the standard cosmological model.

measured in a radial direction r̂ at redshift z (corre-
sponding to 21-cm radiation observed at frequency ν =
c/[λ21(1+z)]). Here, A is the Einstein spontaneous emis-
sion coefficient for the 21-cm transition, Vr is the phys-
ical velocity in the radial direction (including both the
Hubble flow and the peculiar velocity of the gas v), and
∂Vr/∂r is the velocity gradient in the radial direction.
Explicitly, we have

∂Vr

∂r
=

H(z)

1 + z
+

∂(v · r̂)
∂r

. (8)

Combining Eqs. (7) and (8) and expanding to linear or-
der, we find

δTb = −T b
1 + z

H(z)

∂vr

∂r
+

∂Tb

∂δ
δ, (9)

where T b is the mean brightness temperature, vr = v · r̂

is the peculiar velocity in the radial direction, and δ =
(nH − nH)/nH is the overdensity of the gas.

Moving to Fourier space, we find

δT̃b = −T b
1 + z

H(z)
µ2 (ikṽ) +

∂Tb

∂δ
δ̃, (10)

δT̃b = T b

[
µ2 + ξ

]
δ̃, (11)

where µ = k̂ · r̂ = cos θk is the cosine of the angle
between the radial direction and the direction of the
wavevector k, and ξ is defined by ξ ≡ (1/T b)(∂Tb/∂δ).
The second line, Eq. (11), uses the additional relation
δ̃ = −(ikṽ)(1 + z)/H , which is, strictly speaking, valid
on scales larger than the Jean’s length during the mat-
ter dominated epoch. The total brightness-temperature
power spectrum is thus [32, 51]

⟨δT̃b(k)δT̃b(k
′)⟩ = (2π)3δ(3)(k + k′)PTb

(k), (12)

Kleban+(2007)	

What	  can	  we	  do	  with	  21cm?	  
	  
High	  precision	  on	  small-‐scale	  power	  spectrum	   ΔP / P ~1/ N

6

FIG. 1: Contours of 90% C.L. forecasts in Σmν -Nν plane, by adopting Planck + Polarbear + each 21 cm experiment (left
two panels), or CMBPol + each 21 cm experiment (right two panels). Fiducial values of neutrino parameters, Nν and Σmν , are
taken to be Nν = 3.04 and Σmν = 0.1 eV (for upper two panels) or Σmν = 0.05 eV (for lower two panels). The dashed line
means the constraint obtained by only a CMB observation such as Planck + Polarbear alone (left two panels), or CMBPol
alone (right two panels). The severer constrains are obtained by combining the CMB with a 21 cm observation such as MWA
(outer solid, only for left panels), SKA (middle solid), and Omniscope (inner solid), respectively.

model. Adding the 21 cm experiments to the CMB ex-
periment, we see that there is a substantial improvement
for the sensitivities to Σmν and Nν . That is because
several parameter degeneracies are broken by those com-
binations, e.g., in particular Tb and As were completely
degenerate only in 21 cm line measurements. Therefore
it is essential to add the CMB to the 21 cm experiment
to be vital for breaking those parameter degeneracies.

If each CMB experiment is combined with SKA or
Omniscope, the corresponding constraint can be signifi-
cantly improved. We showed numerical values of those
errors in Table III in case that the fiducial values are
taken to be Nν = 3.04 and Σmν = 0.05 eV. On the
other hand, comparing those values with the current best
bounds for Σmν + Nν model, which give Σmν < 0.89
eV and Nν = 4.47+1.82

−1.74 obtained by CMB (WMAP) +
HST(Hubble Space Telescope) + BAO [28], we find that
the ongoing and future 21 cm line + the CMB obser-
vation will be able to constrain those parameters much

more severely.
The case of Σmν = 0.1 eV to be fiducial (upper two

panels) corresponds to the lowest value for the inverted
hierarchy when we use oscillation data. Then it is notable
that CMBPol + SKA can detect the nonzero neutrino
mass. Of course, Planck + Polarbear + Omniscope
and CMBPol + Omniscope can obviously do the same
job.
On the other hand, the case of Σmν = 0.05 eV to

be fiducial (lower two panels), which corresponds to the
lowest value for the normal hierarchy, only Planck + Po-

larbear + Omniscope or CMBPol + Omniscope can
detect the nonzero neutrino mass.

B. Constraints on neutrino mass hierarchy

Next we discuss if we will be able to determine the
neutrino mass hierarchies by using those ongoing and fu-

Oyama+(2013)	
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Model:	  Ultra-‐light	  scalars	

•  Ultra-‐light	  mass	  :	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DE	  (Barbieri	  et	  al	  (2005),…)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DM	  (Hu	  (2000),…)	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  String	  axiverse	  (Arvanitaki	  et	  al	  (2009),...)	  
(Likelihood	  analysis:	  Amendola	  et	  al	  (2005),	  Marsh	  et	  al	  (2013)…)	  

	  

	  

mu ~10
−22eV

mu ~10
−22eV −10−10eV

mu ~ H0 ~10
−33eV

mu, fu =Ωu /Ωm ~O(0.01)
mu ≤ H (t) : ρu = const
mu > H (t) : ρu ∝1/ a

3
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Power	  spectrum	  P(k)	

If oscillation starts during matter domination :  z osc~ m
2/3,k* ~ m1/3

If oscillation starts during radiation domination :  z osc~ m
1/2,k* ~ m1/2

Cosmo	  2015		  
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Figure 1: The perturbation evolutions for ULPs (mu = 105H0, fu = 0.05) and CDM.
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Figure 2: Left: The (linear and nonlinear) power spectrum P (k) with and without the ULPs for
mu = 105H0, fu = 0.05. Right: The transfer function T 2(k) = P (k)ULPs/P (k)no ULPs representing
the ratio of the power spectrum including the ULPs (fu = 0.05) to that without the ULPs (the
values of mu in the figure are in terms of H0 ≈ 2× 10−33eV ).
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Likelihood	  analysis	
•  Fisher	  forecasts:	  CMB	  +	  21cm.	  
	

 ΩΛ,Ωmh
2,Ωbh

2,ns,As,τ ,Neff ,ma, fu, fν , xHI ,bHII (z)

Cosmo	  2015	

KK,	  Mao,	  Ichiki,	  Silk	  (2014)	
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Figure 3: 1σ error contour for the ULP and neutrino fractions with respect to the total matter
fu, fν . The solid curves are the contours from both 21 cm and CMB observables while the dashed
curves are for the CMB alone. The fiducial values (fu, fν) = (0.05, 0.0044) for the normal neutrino
mass hierarchy is indicated by +.

the ULP parameter estimations due to the parameter degeneracies. We choose the conventional
normal mass hierarchy scenario for our fiducial neutrino mass pattern consisting of three neutrinos
(mν1 , mν2, mν3) = (0, 0.009, 0.05)[eV] based on the global analysis of neutrino oscillation data giving
∆m2

31 = 2.47 × 10−3eV2,∆m2
21 = 7.54 × 10−5 eV2 where ∆mij ≡ m2

i − m2
j [57, 58] (accordingly

we choose Neff = 1.046, fν = 0.0044). Because of the analogous effects to suppress the matter
power, we can expect the negative correlation between fu and fν . This is confirmed in Fig. 3
which shows the 1σ error contours with all the other parameters marginalized over, even though
there do exist the distinctive features between the ULPs and neutrinos such as the ULPs’ scale
dependent effective sound speed and transition from the dark energy to dark matter like behavior
which the neutrinos do not possess. Consequently, the precise measurements of the power spectrum
around the suppression starting scale for each species should be able to distinguish these species
from one another. Fig. 3 indeed shows the tendency of the CMB losing the sensitivity to the ULPs
for mu ≫ 105H0 because the ULP oscillation starts well before the last scattering surface epoch
for such a large mu. The CMB observables however are still essential to improve the constraints
on ULPs from the 21 cm observables because of lifting the degeneracies among the cosmological
parameters. For instance, the 21 cm alone without adding the CMB observables cannot constrain
the ULP parameters so well because of too strong degeneracies between As and xHI

both of which
affect the 21 cm power spectrum amplitude as given in Eq. 4.

The main goal of this paper is to clarify the power of the 21 cm observables to constrain the
ULP parameters, and our results are summarized in Fig. 4 which shows the 1σ uncertainties in the
ULP parameters for several representative ULP masses for fu = 0.05. The 1σ errors on the ULP
parameters fu, mu can be of order a few percent for the mass range to which the 21 cm signals are
most sensitive. The sensitivity of the cosmological observables to the ULP parameters, however,
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Figure 4: 1σ errors in fu and mu (the fiducial value fu = 0.05) for several fiducial values of mu in
terms of H0(≈ 2× 10−33 eV).

 10

 100

 1  10  100  1000  10000  1e+05  1e+06  1e+07  1e+08  1e+09

U
nc

er
ta

in
ty

 in
 f u

 [p
er

ce
nt

]

Fiducial ULP mass mu

CMB

CMB + 21cm
 10

 100

 1  10  100  1000  10000  1e+05  1e+06  1e+07  1e+08  1e+09

U
nc

er
ta

in
ty

 in
 m

u 
[p

er
ce

nt
]

Fiducial ULP mass mu

CMB

CMB + 21cm

Figure 5: 1σ errors in fu and mu (the fiducial value fu = 0.01) for several fiducial values of mu in
terms of H0(≈ 2× 10−33 eV).
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Ø  Forecast	  Results	  
UncertainYes	  in	  fu	  ,	  mu:	  10~20	  %	  
Most	  sensiYve	  mu:	  	

CMB :mu ~10
4−6H0 (10

−29~−27eV )
21cm :mu ~10

7H0 (10
−26eV )
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Hyperfine	  spin	  flip	  transiYon	  

n1
n0
~ exp(−T* /TS )

Spin	  temperature	

The	  occupaYon	  number	  of	  each	  level	  (equivalently	  spin	  temperature)	  can	  be	  altered	  by	  	  
a)  the	  absorpYon/sYmulated	  emission	  from/to	  CMB	  photons	  
b)  collision	  with	  other	  gas	  parYcles	  (other	  hydrogen	  atoms,	  protons	  and	  electrons).	  	  
	  
Ts	  is	  the	  weighted	  average	  of	  CMB	  temperature	  and	  gas	  temperature	  (Field	  (1958)):	  

TS =
TCMB + ycTk
1+ yc

If	  collision	  is	  efficient,	  coupling	  coefficient	  yc	  gets	  big	  and	  Ts-‐>Tk	  
If	  yc	  or	  Tk	  gets	  small,	  Ts-‐>Tcmb.	

(T* = 0.0681K  for 21cm line)

21	  cm	  signals	  
	

TS
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What	  can	  we	  measure	  through	  21cm	  signals?	  	



EvoluYon	  of	  temperature	  	

First Light 29

assumed a baryonic Universe, with a nonlinear fluctuation amplitude on small
scales at z ∼ 103, a model which has by now been ruled out. The lack of a
dominant mass of dark matter inside globular clusters makes it unlikely that
they formed through direct cosmological collapse, and more likely that they
resulted from fragmentation during the process of galaxy formation.

Fig. 12. Thermal history of the baryons, left over from the big bang, before the first
galaxies formed. The residual fraction of free electrons couple the gas temperture
Tgas to the cosmic microwave background temperature [Tγ ∝ (1+z)] until a redshift
z ∼ 200. Subsequently the gas temperature cools adiabatically at a faster rate
[Tgas ∝ (1 + z)2]. Also shown is the spin temperature of the 21cm transition of
hydrogen Ts which interpolates between the gas and radiation temperature and will
be discussed in detail later in this review.

At z < zt, the gas temperature declines adiabatically as [(1 + z)/(1 + zt)]2

(i.e., β = 1) and the total Jeans mass obtains the value,

MJ = 4.54 × 103

(

Ωmh2

0.15

)−1/2(
Ωbh2

0.022

)−3/5(
1 + z

10

)3/2

M⊙. (62)

It is not clear how the value of the Jeans mass derived above relates to the
mass of collapsed, bound objects. The above analysis is perturbative (Eqs. 57
and 58 are valid only as long as δb and δdm are much smaller than unity), and
thus can only describe the initial phase of the collapse. As δb and δdm grow and
become larger than unity, the density profiles start to evolve and dark matter
shells may cross baryonic shells [167] due to their different dynamics. Hence
the amount of mass enclosed within a given baryonic shell may increase with
time, until eventually the dark matter pulls the baryons with it and causes
their collapse even for objects below the Jeans mass.

Even within linear theory, the Jeans mass is related only to the evolution
of perturbations at a given time. When the Jeans mass itself varies with time,

z ≤ 200

z ~ 40

TK < TCMB
Radiation :TCMB ~ 1/ a ~ (1+ z)
Adiabatically cooling gas :TK ~ 1/ a2 ~ (1+ z)2

TS →TK < TCMB

TS →TCMB

Atomic	  collisions	  dominate	  CMB	  photon	  absorpYon	  	  

Compton	  sca5ering	  between	  CMB	  photons	  and	  free	  
electrons	  in	  the	  gas	  lenover	  	  from	  recombinaYon	  z ≥ 200; TK ~ TCMB ~ (1+ z) 

TK ~ TS Big	  gas	  density	  lets	  collisional	  coupling	  dominate	  	  	

Due	  to	  decreasing	  gas	  density	  and	  
temperature,	  radiaYve	  coupling	  to	  the	  CMB	  	  
photon	  absorpYon/emission	  dominates	  atomic	  
collisions.	  

Loeb	  (2006)	
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e.g.	  exoYc	  heaYng	  sources:	  
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FIG. 4: As Fig. 1, except for energy injection in the trans-
parency window. The bottom solid curve in each panel
assumes no extra energy injection. The other curves take
ξ−24 = 1. The dotted, dot-dashed, short-dashed, and long-
dashed curves take τ100 = 1, 10−1, 10−2 and 10−3, respec-
tively.

to (but slightly before) the crossover point (at which
T̄K = Tγ), P21 also goes to zero. (When δ̄T b = 0, over-
dense regions have T̄K > Tγ and hence are visible.) This
transition point would be a clear signature of strong heat-
ing from some exotic process. Unfortunately, in many
models the clearest differences occur at z ! 40, when
confusion with (rare) luminous sources may make it dif-
ficult to separate the signal.

Figure 3 illustrates how the different processes shape
the curves in Figure 2 for a fiducial model with ξ−24 = 0.1
(solid curve). Here the dotted curve assumes the stan-
dard recombination history (ξ−24 = 0). The short-
dashed curve ignores the Lyα photons created through
collisional excitation. This makes no difference at high
redshifts, where collisional coupling is already efficient,
but decreases the mean signal by ∼ 25% and the rms
fluctuations by ∼ 20% at low redshifts. In this regime
the Lyα background helps to maintain contact between
TS and TK (even though xα ∝ [1 + z]1/2). The long-
dashed curve assumes θu = 0, so that the energy is de-
posited uniformly. (Spatial fluctuations in the dark mat-
ter decay rate obviously have no effect on δ̄T b, so we
do not show this curve in the bottom panel.) This in-
creases the fluctuation amplitude at higher redshifts by
decreasing the heating rate in dense gas so that it absorbs
more strongly. For the same reason, the “zero-point” for
the fluctuations actually follows that of δ̄T b. Of course,
once the gas appears in emission, uniform energy injec-
tion tends to damp out the fluctuations (because dense
regions remain colder and hence less luminous).

FIG. 5: 21 cm signals for long-lived dark matter with energy
injection in the transparency window. Curves take the same
parameters as in Fig. 4. (a): Fluctuation amplitude at k =
0.04 Mpc−1 (note that this scale is arbitrary). (b): Mean
(sky-averaged) signal.

B. Dark Matter Decay: The Optically Thin
Regime

Figure 4 shows the thermal and ionization histories
for several scenarios where energy is deposited in the
transparency window. We take ξ−24 = 1 and as-
sume a roughly constant cross section. The dotted,
dot-dashed, short-dashed, and long-dashed curves take
τ100 = 1, 10−1, 10−2 and 10−3, respectively; note that
at any given redshift τ and ξX are essentially degenerate
in our simple model: the net energy deposition rates at
z = 100 in these models precisely equal the corresponding
curves in Figure 1. It is only the redshift evolution that
changes. We note that τes = 0.047, 0.018, 0.0062, and
0.0046 for these models (including only gas at z > 10).
Thus the dotted curve substantially affects the CMB (and
can already be ruled out), but the others have quite weak
effects on it.

For a fixed effective energy deposition rate, the ma-
jor difference within the transparency window is that a
larger fraction of the heating and ionization occurs at
relatively high redshifts, with x̄i and T̄K increasing more
slowly at lower redshifts. As a result the crossover point
T̄K > Tγ occurs earlier (if it occurs at all, of course), so
the features in the 21 cm signal (shown in Figure 5) oc-
cur at significantly lower frequencies. Nevertheless, they
have the same general structure compared to the stan-
dard calculation, with a reduced fluctuation amplitude
at higher redshifts but stronger fluctuations at lower red-
shift. The overall magnitude of the effect is comparable
to the optically thick models in Figure 2, although here
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The spectral index n depends on the nature of DM models, for instance, n = −1 corresponds
to the Yukawa-type potential DM , n = −2,−4 are respectively for dipole DM and millicharged
DM [3, 4, 5, 6, 20, 21, 22, 23, 24, 25, 26]. The constant coefficient cn depends on the value of n and
also can include the correction factor for including the helium in addition to hydrogen. cn can vary
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on the 21cm observables2.
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stage of the universe, it is well-known that the baryon temperature is tightly coupled with the CMB
temperature, Tb ∼ Tγ . Similarly, for a sufficiently large Kb, the difference between Td and Tb can
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integration of the differential cross section weighted by (1− cos θ)
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The weight factor (1 − cos θ) is introduced to consider the longitudinal momentum transfer and it can regulate
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Having obtained a constraint on σ0 in this way for mχ = 10 GeV, we present our result as a constraint on (σ0/mχ),
valid for any value of mχ subject to mχ ≫ mH, and quoted separately for different values of n. Note that, in the
limit of mχ ≫ mH, there is no dependence on n in the scaling of the bound as function of mχ for fixed σ0, to leading
order in (mH/mχ). This is so because all the dynamical difference between the models is contained in the velocity

dependence, where the thermal dispersion becomes dominated by the baryons,
〈

(∆v⃗)2
〉

≈ 3 (Tb/mb) to leading order

in (mH/mχ). While we do not discuss here in detail the limit mχ < mH, we note that the set of equations presented
in Sec. III provides all of the information required to evaluate the bounds in the low-mχ limit, as long as the DM is
non-relativistic throughout the time of interest z ! 109 (satisfied for mχ " 1 MeV).
We determine joint constraints on σ0 and the basic set of ΛCDM cosmological parameters,

pµ = {Ωbh
2,Ωχh

2, τ, θ, As, ns}. (20)

Here Ωbh2 is the physical baryon density, Ωχh2 is the physical dark matter density, τ is the reionization optical depth,
and θ is the angular size of the sound horizon at recombination. We ignore tensor modes and assume a flat geometry.
Our numerical results are summarized in Table I. In obtaining these bounds, instead of solving for Tχ [which can

easily be done using Eq. (13)] we simply set Tχ = Tb. The induced error is of O (mH/mχ) for heavy DM.

n CMB (95%CL, cm2/g) CMB + Lyman-α (95%CL, cm2/g) λ (MW)

-4 1.8× 10−17 1.7× 10−17 27 Gpc

-2 3.0× 10−9 6.2× 10−10 738 Mpc

-1 1.6× 10−5 1.4 × 10−6 313 Mpc

0 0.12 3.3 × 10−3 138 Mpc

+2 1.3× 105 9.5 × 103 46 Mpc

TABLE I: 95%CL constraints on (σ0/mχ) from CMB alone (with Planck data) and from CMB in combination with Lyman-α
data from the SDSS. Results are valid for mχ ≫ mH, and conservatively neglect scattering from helium, setting FHe = 0.76
(adding coherent isospin-independent scattering on helium would tighten the bounds by a factor of 6). First column: power-
law index n of Eq. (4). Second column: CMB alone, constraint in units of cm2/g. Third column: combined CMB and
Lyman-α. Fourth column: minimal mean free path for baryon scattering on DM in the MW solar cycle (ρχ ∼ 0.4 GeV/cm3,
v = vMW ∼ 10−3), using the CMB + Lyman-α constraint.

These constraints are obtained using the momentum-transfer rate given in Eq. (18). As discussed at the end of
Sec. III B, at redshift z < 104 Eq. (18) provides only an approximate treatment of the perturbation equations as the
full evolution becomes nonlinear3. To estimate the impact of our approximation, we compare the constraints reported
in Tab. I to the constraints obtained using Eq. (14), instead of (18). For the the n = −2, n = 0, and n = +2 models,
we find that the CMB+Lyman-α constraints exhibit essentially no change. This happens because for these models,
Lyman-α dominates the constraint, and the matter power spectrum on the scales probed by Lyman-α is determined
by mode evolution at z ≫ 104, where Eqs. (14) and (18) are equally valid. In contrast, the model with n = −4 is
constrained primarily by the CMB data, and is sensitive to the appearance of V 2

RMS in Eq. (18) that regularizes an
otherwise decreasing thermal velocity. Using Eq. (14) instead of (18) for the model with n = −4, we would find an
artificially stronger bound, (σ0/mχ) < 1.4 × 10−18, more constraining by a factor of 10 compared with the number
we quote in Tab. I. We believe that our simplified analysis of the n = −4 case in the nonlinear regime is conservative,
and leaves room for significant improvement of the constraints. This could be of particular interest as n = −4 arises
in simple particle physics models where DM has a small electric charge.
In Fig. 3 we show the effect of DM-baryon scattering on the CMB and matter power spectra, using for the plots the

95% CL limits from the CMB + Lyman-α chains, taken from Tab. I. We add in Fig. 3 (right panel) the experimental
Lyman-α data point used in the likelihood analysis, at k = 1.03 h/Mpc, showing the 95% CL limit of both amplitude
and slope. In the CMB plot, we denote the ±1σ error bars of Planck, including beam noise and cosmic variance, as
black (+) marks.
In Fig. 4 we show separately the slope of the linear matter power spectra for the different models, along with the

experimental value and its 95%CL limit coming from the Lyman-α analysis done in Ref. [42].
Finally, we comment that the likelihood procedure given in Ref. [42] strictly applies only to cosmological models

with a power-law matter power spectrum. This assumption is not completely satisfied in our framework, where a large

3 This issue is relevant for models with n ̸= −1. For n = −1, Eqs. (14) and (18) coincide.
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that follows, discuss the possible consequences for the evolution of galaxies at late times.
We compute the halo mass function using the extended Press-Schechter formalism [47–49],

dnh

dM
(M) =

ρm
M

∣

∣

∣

∣

dσ

dM

∣

∣

∣

∣

f (δχ(z), σ̂) , (21)

where ρm is the mean matter density in the Universe, and σ̂ is the variance,

σ̂(M) =

∫

dk

k
∆m(k) |W (k,R)|2 . (22)

Here ∆m(k) is the matter density variance and W (k,R) is a tophat window function of radius R, corresponding to a
halo of mass M =

(

4πR3ρm/3
)

. For the function f we use the Sheth-Tormen functional form [50], given by

f (δχ, σ̂) = A
ν

σ̂

√

a

2π

[

1 +
1

(aν2)q

]

e−aν2/2, (23)

where ν =
(

δ/
√
σ̂
)

, a = 0.75, q = 0.3, A = 0.322, and δ = 0.686 is the critical density of collapse.

FIG. 5: Halo mass function as a function of mass. A model with no scattering is shown in black/dashed lines, and models with
different velocity-dependent cross sections are shown with a value of σ0/mχ taken at the 95% CL limit from the analysis with
CMB and Lyman-α data in Table I.

Fig. 5 shows the halo mass function as a function of mass for a model with no scattering (black/dashed line) along
with models with different velocity-dependent cross sections with a value of (σ0/mχ) taken at the 95% CL limit from
Tab. I, using CMB + Lyman-α data. In all cases, the cosmological parameters were fixed to the best fit point at the
given value of (σ0/mχ).
Two main lessons can be drawn from Fig. 5. First, the combined constraints from linear cosmology imply that

DM-baryon scattering cannot affect the halo mass function for structures more massive than ∼ 1012M⊙. This result
is model-independent. It simply reflects the scale at which the observational LSS constraint is applied in our analysis,
k ∼ 1 Mpc−1, since

M =
4π

3

(π

k

)3
ρm ∼ 2× 1012 M⊙

(

k

1 Mpc−1

)−3

. (24)

For smaller mass halos, significant suppression of structure is in principle possible.
Second, note that the model with n = −4 (scattering cross section scaling as v−4) does not have any effect on the

halo mass function. This occurs because models with n < −3 have the feature that they freeze-out towards high
redshift, when the collision velocities (governed by thermal motion) get large, and freeze-in at lower redshift when
the velocities drop. In contrast, models with n > −3 are initially important and then subsequently freeze-out as the
Universe expands and cools. As halos of smaller mass form earlier, only modes of n > −3 can affect the primordial halo
mass function on small scales while still satisfying CMB/LSS constraints that are only directly sensitive to z ! 106.
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Figure 3: The evolution of the angular power spectrum Cℓ for different values of DM-baryon cou-
pling. We set md = mH and 10mH in the left and right panels, respectively. In both left and right
panels, the redshifts are set to z = 40, 30 and 20 from the top to bottom, respectively.
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Outline	  or	  Summary:	  	  
	  
Example	  1:	  	  	  21	  cm	  probes	  on	  the	  ultra-‐light	  parYcle	  dark	  ma5er	  (DM)	  
	  	  	  	  	  
	  
	  
Example	  2:	  	  	  21	  cm	  probes	  on	  the	  DM-‐baryon	  elasYc	  sca5ering	  
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Can	  change	  the	  21cm	  signals	  by	  100%	  or	  more	  compared	  with	  no	  coupling	  scenarios	  

IllustraYon	  of	  the	  potenYal	  power	  on	  the	  cosmological	  parameters	  

Concluding	  remarks:	  	  
MulYple	  probes	  would	  be	  essenYal	  to	  study	  the	  DM	  properYes	  
	  
	  (DM	  direct/indirect	  detecYon	  experiments,	  collider,	  large	  scale	  structure,	  CMB)	


