Kenii Kadota *IBS Center for Theoretical Physics of the Universe(CTPU), Institute for Basic Science*

Outline:

KK, Yi Mao (IAP), Kiyotomo Ichiki (Nagoya), Joseph Silk (IAP, Johns Hopkins, Oxford), JCAP 1406 (2014) 011 Example 1: 21 cm probes on the ultra-light particle dark matter (DM)

Example 2: 21 cm probes on the DM-baryon elastic scattering

Hiroyuki Tashiro (Nagoya), KK, Joseph Silk (IAP, JHU,Oxford), Phys.Rev. D90 (2014) 8, 083522

TIDAL INTERACTIONS IN M81 GROUP

Stellar Light Distribution 21 cm HI Distribution

Kenji Kadota (IBS) Cosmo 2015 2

Vears since Brief History of Universe

Square Kilometer Array

South Africa- Karoo Australia- Western Outback

Cost: $~650$ M Euros, Operation $~\sim$ 50 M Euros per year. Construction 2017-2023, Early Science 2020-, Full Science 2023-2028
Cost: ~650 M Euros, Operation ~ 50 M Euros per year.
Pathfinders for SKA: Construction 2017-2023, Early Science 2020-, Full Science 2023-2028

Pathfinders for SKA: GMRT(2010), LOFAR(2010), PAPER(2011), MWA(2011), SKA(2020)

What can we do with 21cm?

Kenii Kadota

IBS Center for Theoretical Physics of the Universe(CTPU), Institute for Basic Science

Outline:

Example 1: 21 cm probes on the ultra-light particle dark matter (DM)

KK, Yi Mao (IAP), Kiyotomo Ichiki (Nagoya), Joseph Silk (IAP, Johns Hopkins,Oxford), JCAP 1406 (2014) 011

Example 2: 21 cm probes on the DM-baryon elastic scattering

Hiroyuki Tashiro (Nagoya), KK, Joseph Silk (IAP, JHU,Oxford), Phys.Rev. D90 (2014) 8, 083522

Model: Ultra-light scalars

• Ultra-light mass :

DE (Barbieri et al (2005),...) DM (Hu (2000),...) $m_u \sim 10^{-22} eV$ $m_u \sim H_0 \sim 10^{-33} eV$

 $m_u \sim 10^{-22} eV - 10^{-10} eV$ String axiverse (Arvanitaki et al (2009),...) (Likelihood analysis: Amendola et al (2005), Marsh et al (2013)...)

$$
m_u, f_u = \Omega_u / \Omega_m \sim O(0.01)
$$

\n
$$
m_u \le H(t) : \rho_u = const
$$

\n
$$
m_u > H(t) : \rho_u \propto 1 / a^3
$$

Power spectrum $P(k)$

If oscillation starts during matter domination : $z_{osc} \sim m$ 2/3 $,k_* \sim m$ $\frac{1}{3}$ If oscillation starts during radiation domination : $z_{osc} \sim m$ 1/2 $,k_* \sim m$ 1/2 $\frac{1}{0.001}$ 1000 10000 0.001 0.01 0.1 1 P(k)[(Mpc/h) P(k)[(Mpc/h)³] k [h/Mpc] Linear: f_u ${\mathsf f}_{\sf u}$ =0.05 Nonlinear: f_u=0 $f_{\text{H}} = 0.05$ 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0.0001 0.001 0.01 0.1 1 P(k) ratio k [h/Mpc] Linear: m_{u} =1e3 $m_{\rm u}$ =1e5 $m_{\text{u}}=1e7...$ Nonlinear: $m_{\text{u}} = 1e3$ $m_{\rm u}$ =1e5 $m_{\rm u}$ =1e7

Figure 2: Left: The KK, Mao, Ichiki, Silk (2014) $\frac{1}{100}$, further function $\frac{1}{2}$ $\frac{1}{2}$

Likelihood analysis • Fisher forecasts: CMB + 21cm.

 Ω_{Λ} , $\Omega_{m}h^{2}$, $\Omega_{b}h^{2}$, n_{s} , A_{s} , τ , N_{eff} , m_{a} , f_{u} , f_{v} , x_{HI} , $b_{HII}(z)$

Kenji Kadota (IBS) 9 Figure 4: 1σ errors in f_u and m_u (the fiducial value $f_u = 0.05$) for several fiducial values of m_u in terms of H ($\approx 2 \times 10^{-33}$ eV) $\frac{\text{volume of H0}}{\text{cosh}}$ shows the oversee over. terms of $H_0(\approx 2 \times 10^{-33} \text{ eV})$.

 $\frac{1}{\sqrt{2}}$ there do exist the distinctive features between the ULPs and neutrinos such as the ULPs' scales such as the

Cosmo 2015

Kenii Kadota

IBS Center for Theoretical Physics of the Universe(CTPU), Institute for Basic Science

Outline:

KK, Yi Mao (IAP), Kiyotomo Ichiki (Nagoya), Joseph Silk (IAP, Johns Hopkins, Oxford), JCAP 1406 (2014) 011 Example 1: 21 cm probes on the ultra-light particle dark matter (DM)

Example 2: 21 cm probes on the DM-baryon elastic scattering

Hiroyuki Tashiro (Nagoya), KK, Joseph Silk (IAP, JHU,Oxford), Phys.Rev. D90 (2014) 8, 083522

The occupation number of each level (equivalently spin temperature) can be altered by

- a) the absorption/stimulated emission from/to CMB photons
- b) collision with other gas particles (other hydrogen atoms, protons and electrons).

Ts is the weighted average of CMB temperature and gas temperature (Field (1958)):

$$
T_S = \frac{T_{CMB} + y_c T_k}{1 + y_c}
$$

If collision is efficient, coupling coefficient yc gets big and Ts->Tk If yc or Tk gets small, Ts->Tcmb.

Kenji Kadota (IBS) **Cosmo** 2015 **Cosmo** 2015

$$
z \le 200 \t T_K < T_{CMB}
$$
\nRadiation: $T_{CMB} \sim 1/a \sim (1+z)$

\nAdiabatically cooling gas: $T_K \sim 1/a^2 \sim (1+z)^2$

\n $T_S \rightarrow T_K < T_{CMB}$

\nAtomic collisions dominate CMB photon absorption

$$
z \sim 40 \t T_s \rightarrow T_{CMB}
$$
 Due to decreasing gas density and
temperature, radiative coupling to the CMB
photon absorption/emission dominates atomic
collisions.^{Cosmo 2015}

e.g. exotic heating sources:

• DM decay and annihilation during the cosmic dark ages (Chen&Kamionkowski(2004), Furlanetto(2006))

Our work: DM elastic scattering

Kenji Kadota (IBS) **Cosmo** 2015 **Cosmo 2015** 13 Fig. 4: Assembly in the trans-term in the particular particular particular particular complete in the bottom solid curve in each particular par

$$
(1+z)\frac{dT_d}{dz} = 2T_d + \frac{2m_d}{m_d + m_H} \frac{K_b}{H} (T_d - T_b),
$$

$$
(1+z)\frac{dT_b}{dz} = 2T_b + \frac{2\mu_b K_\gamma}{m_e H} (T_b - T_\gamma) + \frac{2\mu_b}{m_d + m_H} \frac{\rho_d K_b}{\rho_b H} (T_b - T_d)
$$

Momentum transfer rate

Momentum transfer rate

\n
$$
K_{\gamma} = \frac{4\rho_{\gamma}}{3\rho_{b}} n_{e} \sigma_{T}
$$
\n(Compton collision rate)

\n
$$
K_{b} = \frac{c_{n}\rho_{b}\sigma_{0}}{m_{H} + m_{d}} \left(\frac{T_{b}}{m_{H}} + \frac{T_{d}}{m_{d}}\right)^{\frac{n+1}{2}} \quad \sigma(v) = \sigma_{0}v^{n}
$$

² Planck+SDSS \Diamond Dlanck+SDSS

→ Planck+SDSS Dvorkin, Blum and Kamionkowski (2013) Our numerical results are summarized in Table I. In obtaining these bounds, instead of solving for T^χ [which can $D_{1.5}$ solitic, $D_{1.1}$ and $D_{2.1}$ is the original density of (2012)

Kenii Kadota *IBS* Center for Theoretical Physics of the Universe, Institute for Basic Science

Outline or Summary:

Example 1: 21 cm probes on the ultra-light particle dark matter (DM)

l

Illustration of the potential power on the cosmological parameters

Example 2: 21 cm probes on the DM-baryon elastic scattering

Can change the 21cm signals by 100% or more compared with no coupling scenarios

Concluding remarks:

Multiple probes would be essential to study the DM properties

(DM direct/indirect detection experiments, collider, large scale structure, CMB)