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The Inflationary Paradigm 

•  Simplest constituents of the inflationary 
paradigm consistent with observations. 

•  Including: 
•  Flat universe 
•  Adiabaticity 
•  Homogeneity 
•  Gaussian perturbations 
•  Small non-Gaussianities 
•  Near scale invariance 
•  Lack of exotic relics 

•  How can we further test early universe models? 



CMB Polarization 
•  Thomson scattering from quadrupolar density anisotropies 

produces polarized light. 
•  Polarization decomposed into E- and B-modes. 

•  E-modes gradient “source/sink” polarization 
•  B-modes are “swirly” or non-mirror symmetric 
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Gravitational Waves Produce E and B polarization 

•  Warping of space produces 
quadrupole moment perpendicular to 
direction of propagation. 

•  Unlike density waves, gravitational 
waves produce both E- and B-mode 
polarization. 

•  Gravitational waves are predicted by 
models of inflation. 

•  Combining many hot and cold spots 
on the sky we get the expected TE 
correlation pattern. 
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Current constraints on ns and r 
•  r < 0.08 (@ 95% CL) Planck TT + low ℓ Polarization + BKP. 
•  r < 0.10 (@ 95% CL) same as above, but allowing for ns running. 
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Planck 2015 results. XX. Constraints on Inflation  



Three Full-sky Surveys 
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The Rest 
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Current E- and B-mode Measurements 
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Foreground Cleaned 
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A Joint Analysis of BICEP2/Keck Array and Planck Data 



SPIDER 

10 

•  A balloon-borne polarimeter. 
•  Mapped about 10% of the sky.  
•  Six telescopes, 3/3 at 95/150 GHz. 

•   Approx. 2000 detectors (85% yield) 
•  About 0.5 deg resolution. 

•  ℓ ≈ 10–300 
•  Science goals: 

•  Set limits on primordial 
gravitational wave amplitude of r 
< 0.03 at 99% confidence (no 
foregrounds) 

•  Characterize polarized 
foregrounds 

•  Lensing B-modes 
•  Questions: 

•  Are primordial B-modes within 
our reach? 

•  Is slow roll inflation unbreakable? 
•  First science flight 2013!?/2014. 
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Primary characteristics

Sky coverage About 10 %

Scan rate (az) 3.6 deg/s at peak

Polarization modulation Stepped cryogenic HWP

Detector type Antenna-coupled TES

Multipole range 10 < ℓ	  < 300

Observation time 16 days

Limits on r† 0.03

† Assuming no foregrounds, at 99% confidence

Frequency [GHz]

95 150

Telescopes 3 3

Bandwidth [GHz] 22 36

Optical efficiency 30-45% 30-50%

Angular resolution* [arcmin] 42 30

Number of detectors† 690 1230

Internal loading‡ [pW] ≤	  0.25 ≤	  0.35	  

NET per detector [μK·rts] 120-150 110-150

*FWHM. †Assuming 80% yield. ���
‡Including sleeve, window, and baffle
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Long Duration Ballooning 
•  Circumpolar winds ~10 days/rev. 
•  On average 20 day flights at 36 km. 
•  Why Ballooning? 
•  Space like loading (NET). 
•  Access to larger angular scales. 
•  Wider frequency windows. 
•  Preparation for ULDB promised land. 
•  Why Antarctica? 
•  Continuous solar power. 
•  Long flight times. 
•  At what price? 

•  Narrow launch windows. 
•  Recovery difficulties. 
•  Mass, power, and automation. 
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Data from CSBF 

Fraisse et al. 



CSBF

The Balloons  

16 Fig. Courtesy of CSBF 



Launch 
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Made it to Space 

18 



Flight Summary 
•  Launched on 1/1/2015. 
•  All systems functional. 
•  Around 16 days of science data. 
•  Stable at 35.5±0.5 km.  
•  Expected flagging fraction < 10 %. 
•  A total of 1.56 TB of data. 
•  Cosmic rays minimal. 
•  No indication of magnetic pickup. 
•  NET’s in line with expectation. 
•  In-band loading: 

•  ≤ 0.35 pW at 150 GHz  
•  ≤ 0.25 pW at 95 GHz 
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Scan Strategy 
•  Sinusoidal angular velocity profile with 3.6 deg/s max scan rate. 
•  Full map generated each sidereal day. 
•  Geometric / Hits weighted fsky= 12.3 / 6.3 %. 
•  HWP stepped by ~ 22.5 deg every 0.5 sidereal days. 
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Cosmic Rays 

•  For SPIDER, cosmic rays appear manageable. 
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Planck 143 GHz timeline 

SPIDER 150 GHz timeline 



Early Maps 
•  Minimally cleaned maps of RCW38 are promising. 

 
•  Stay tuned for CMB analysis results! 
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Recovery 

 

 

23 



Next Flight 
•  Aiming for a second flight in 2017-2018 season.
•  Adding 285 GHz dust channels (NIST).

•  Complimentary to Planck’s frequency coverage (between 217 and 353 GHz)

•  Aiming for 3σ detection of r = 0.03 (with foregrounds).
•  Building new flight cryostat. 
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Fraisse et al. (2011) 



Concluding Remarks 

•  SPIDER successfully completed its first flight. 
•  The most instantaneously sensitive  

instrument on the sky 
•  Approximately 16 days of observation 
•  Data analysis ongoing 

•  Payload recovery scheduled for Nov ’15. 
•  Preparing for a subsequent flight in 2017-2018. 
•  Adding a 280 GHz band 
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