

Relativistic Corrections In N-Body Simulations

in collaboration with C Rampf, T Tram, R Crittenden, D Wands and K Koyama arXiv: 1505.04756

Cosmology, Particle Physics and Phenomenology - CP3

Christian Fidler

Today

- The large scale structure of the Universe is expected to be one of the main cosmological probes in the near future
- The precision of large-scale structure data is increasing and will soon surpass the predictive power of the CMB data

Are Theoretical Predictions Or Simulations Ready?

Analytical computations typically rely on perturbation theory

N-body simulations solve Newtonian equations of motion

In this talk we present a method for including relativistic corrections in N-body simulations

GR Is A Theory Of Space-Time

Gauge Freedom: Choose any coordinate system

In an N-body simulation it is necessary to fix a gauge

- The gauge defines the meaning of the N-body coordinates
- The gauge specifies which equations need to be solved

If a gauge exists in which the equations of motion are Newtonian, then a conventional N-body includes all GR effects if its coordinates are understood in that Gauge

- Initial conditions are generated via Zel'dovich approximation using synchronous gauge power spectra
- The Newtonian equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in synchronous gauge
- Velocities however are to be understood in **longitudinal** gauge

While this prescription does work in practice, it does look unsatisfactory from a theoretical point of view

- 1. Compute the density contrast:
- 2. Compute the Bardeen potential:
- 3. Move the particles:

$$\begin{split} \rho_{\rm sim} &= \frac{1}{a^3} \sum_{\rm particles} m \, \delta_{\rm D}^{(3)}(\boldsymbol{x} - \boldsymbol{x}_p) \\ \boldsymbol{\nabla}^2 \Phi_{\rm sim} &= -4\pi \, G \, \bar{a}^2 \rho_{\rm sim} \\ \left(\frac{\partial}{\partial \eta} + \frac{\dot{a}}{a} \right) \boldsymbol{v}_{\rm sim} &= \boldsymbol{\nabla} \Phi_{\rm sim} \end{split}$$

The Metric Including Linear Perturbations

$$\mathrm{d}s^{2} = a^{2} \Big(-(1+2A)\mathrm{d}\eta^{2} - 2\partial^{i}B\,\mathrm{d}x_{i}\mathrm{d}\eta + \left[\delta^{ij}(1+2H_{\mathrm{L}}) + 2D^{ij}H_{\mathrm{T}}\right]\mathrm{d}x_{i}\mathrm{d}x_{j} \Big)$$

The full density $ho = (1 - 3H_{
m L})
ho_{
m sim}$ takes deformation of space into account

- 1. Compute the density contrast:
- 2. Compute the Bardeen potential:
- 3. Move the particles:

$$\begin{split} \rho_{\rm sim} &= \frac{1}{a^3} \sum_{\rm particles} m \, \delta_{\rm D}^{(3)} (\boldsymbol{x} - \boldsymbol{x}_p) \\ \boldsymbol{\nabla}^2 \Phi &= -4\pi \, G \, \bar{a}^2 \bar{\rho} (\delta + 3 H_{\rm L}) \\ \left(\frac{\partial}{\partial \eta} + \frac{\dot{a}}{a} \right) \boldsymbol{v} &= \boldsymbol{\nabla} \Phi \end{split}$$

The Metric Including Linear Perturbations

$$\mathrm{d}s^{2} = a^{2} \Big(-(1+2A)\mathrm{d}\eta^{2} - 2\partial^{i}B\,\mathrm{d}x_{i}\mathrm{d}\eta + \left[\delta^{ij}(1+2H_{\mathrm{L}}) + 2D^{ij}H_{\mathrm{T}}\right]\mathrm{d}x_{i}\mathrm{d}x_{j} \Big)$$

The full density $ho = (1 - 3H_{
m L})
ho_{
m sim}$ takes deformation of space into account

Find a gauge with equations of motion matching the N-body simulation: We fix the temporal Gauge by enforcing B = v:

$$\nabla^2 \Phi = -4\pi G \bar{a}^2 \bar{\rho} \delta$$

When using the spatial Gauge to set $H_{\rm L} = 0$, the Bardeen potential is computed according to GR in the N-body simulation

Relativistic Corrections

$$\left(rac{\partial}{\partial\eta}+rac{\dot{a}}{a}
ight)oldsymbol{v}=oldsymbol{
abla}\Phi+oldsymbol{
abla}\gamma$$

$$\gamma = \ddot{H}_{\rm T} + \frac{a}{a}\dot{H}_{\rm T} - 8\pi G a^2 p \Pi$$

with the total anisotropic stress Π In ΛCDM the correction vanishes as H_T is related to the comoving curvature and therefore conserved

- Initial conditions are generated via Zel'dovich approximation using synchronous gauge power spectra
- The Newtonian equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in synchronous gauge
- Velocities however are to be understood in **longitudinal** gauge

No Λ CDM:

- Initial conditions are generated via Zel'dovich approximation using N-body gauge power spectra
- The Newtonian equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in synchronous gauge
- Velocities however are to be understood in **longitudinal** gauge

No ΛCDM :

- Initial conditions are generated via Zel'dovich approximation using N-body gauge power spectra
- The N-body gauge equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in synchronous gauge
- Velocities however are to be understood in **longitudinal** gauge

No ΛCDM :

- Initial conditions are generated via Zel'dovich approximation using N-body gauge power spectra
- The N-body gauge equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in the N-body gauge
- Velocities however are to be understood in **longitudinal** gauge

No ΛCDM :

- Initial conditions are generated via Zel'dovich approximation using N-body gauge power spectra
- The N-body gauge equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in the N-body gauge
- Velocities are to be understood in N-body gauge

No Λ CDM:

- Initial conditions are generated via Zel'dovich approximation using N-body gauge power spectra
- The N-body gauge equations of motion are solved in the N-body simulation
- The resulting matter power spectrum is interpreted in the N-body gauge
- Velocities are to be understood in N-body gauge
- And all linear relativistic corrections are automatically included

No Λ CDM:

An Example For γ

Université catholique de Louvain

Including residual radiation and neutrinos:

Christian Fidler

Cosmology, Particle Physics and Phenomenology - CP3

N-body

- Defined the N-body gauge, uniquely suited for N-body simulations
- Provide a clean and simple framework, relevant especially out of ΛCDM
- N-body gauge power spectra for generating initial conditions can be generated with CLASS

Thank You For Your Attention

Newtonian Zel'dovich Approximation

$$egin{array}{rcl} \dot{\psi} &=& m{v} \ \dot{\delta} &=& -m{
abla}\cdotm{v} \end{array}$$

Integrate starting from a homogenous distribution ($\psi(0) = 0$):

 $-\boldsymbol{\nabla}\cdot\boldsymbol{\psi}=\delta$

Christian Fidler

N-body

Relativistic Zel'dovich Approximation

$$egin{array}{rcl} oldsymbol{\psi} &=& oldsymbol{v}\ \dot{\delta} &=& -oldsymbol{
abla}\cdotoldsymbol{v}-3\dot{H}_{
m L} \end{array}$$

Integrate starting from a homogenous distribution ($\psi(0) = 0$):

 $-\boldsymbol{\nabla}\cdot\boldsymbol{\psi}=\delta+3H_{\rm L}$

• This correction is absent in the N-body gauge $(H_{\rm L} = 0)$

Christian Fidler

Cosmology, Particle Physics and Phenomenology - CP3

N-body

- Total matter gauge (*H*_T = 0, *B* = *v*) has formally Newtonian equations of motion
 - → well suited for analytical Newtonian computations
 - → not suited for simulations as the simulation density ignores volume deformation
 - → modified initial conditions
- Longitudinal gauge ($B = H_T = 0$) has modified Poisson equation
- Synchronous gauge (A = B = 0) has modified Poisson and Euler equation
 - → often used to generate initial conditions (CAMB uses synchronous gauge) as in a pure CDM Universe the density coincides with the comoving density
 - → we have updated CLASS to compute the actual N-body gauge density to generate initial conditions

Other Popular Gauge Choices

The potential of the displacement field from the classical Zel'dovich approximation on the left and from GR corrections in total matter gauge on the right

- Total matter gauge (*H*_T = 0, *B* = *v*) has formally Newtonian equations of motion
 - → well suited for analytical Newtonian computations
 - → not suited for simulations as the simulation density ignores volume deformation
 - → modified initial conditions
- Longitudinal gauge ($B = H_T = 0$) has modified Poisson equation
- Synchronous gauge (A = B = 0) has modified Poisson and Euler equation
 - → often used to generate initial conditions (CAMB uses synchronous gauge) as in a pure CDM Universe the density coincides with the comoving density
 - → we have updated CLASS to compute the actual N-body gauge density to generate initial conditions