7-11 September 2015
Warsaw, Poland
Europe/Zurich timezone

UV inspired f(R)

8 Sep 2015, 14:20
Rm 115+116 ()

Rm 115+116


Benedict Broy (Theory Group, DESY, Germany)


Motivated by UV realisations of Starobinsky-like inflation models, we study generic exponential plateau-like potentials to understand whether an exact $f(R)$-formulation may still be obtained when the asymptotic shift-symmetry of the potential is broken for larger field values. Potentials which break the shift symmetry with rising exponentials at large field values only allow for corresponding $f(R)$-descriptions with a leading order term $R^{n}$ with $1 < n < 2$, regardless of whether the duality is exact or approximate. The $R^2$-term survives as part of a series expansion of the function $f(R)$ and thus cannot maintain a plateau for all field values. We further find a lean and instructive way to obtain a function $f(R)$ describing $m^2\phi^2$-inflation which breaks the shift symmetry with a monomial, and corresponds to effectively logarithmic corrections to an $R+R^2$ model. These examples emphasise that higher order terms in $f(R)$-theory may not be neglected if they are present at all. Additionally, we relate the function $f(R)$ corresponding to chaotic inflation to a more general Jordan frame set-up. In addition, we consider $f(R)$-duals of two given UV examples, both from supergravity and string theory. Finally, we outline the CMB phenomenology of these models which show effects of power suppression at low-$\ell$.

Presentation Materials

Your browser is out of date!

If you are using Internet Explorer, please use Firefox, Chrome or Edge instead.

Otherwise, please update your browser to the latest version to use Indico without problems.