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Abstract The EQOS for the Geometric Dark Energy (GDE)

In this poster we are presenting the results of several works where f(R) EMTx Energy-density and presure of GDE
gravity is revisited. The main goal of these papers has been the
uncerts,tandmg of this kind of gravity as 2 geom.etrlc theory so we avoid the _ nAf [% (frR — f) — 3ferHR + K (1 Bpt.;)}
mapping to the scalar tensor representation which could present some ATt _ BT R

countroversies, mostly regarding to the multivalued potentials. ab ab

;2 [ (R + ) + 3fagHR — 5 (p — 3prad®i) |

Introduction

‘able 1: Geometric dark energy (GDE) variables in terms of the scalar functions A and B. T
» Several modifications of gravity have been proposed in order to explain the different definitions of the EMT, energy-density, pressure and EOS of GDE are obtained from t
acceleration of the Universe, however it is not clear if behind these quantities A with (A : l,fg,fR, 1)and B (B : 1,1, l,fR_l) in that order. Definitions Il and IV
generalizations of the Einstein-Hilbert action there is a modification or produce the same EOS since Bfg/A = 1 in both cases while the factor A outside the brackets

extension of some physical principle. Therefore, there is not a formal cancels out when taking the ratio of the pressure and the energy-density and they are not conserved.
framework to guide the exploration of these models. f(R) theories of gravity Definition | gives the relation: wx = 3H;(§,34'§f‘:‘;)_R

are perhaps the most straightforward modification of general relativity

providing an extra geometric component which, in some cases, reproduces =LA

this acceleration.

f(R), field equations

he dependence of the Ricci scalar in f(R) is a general function which will Figure 2: Evolution of wx for Hu-Sawicki and Starobinsky f(R) models for the three definitions.
be defined in order to reproduce observations, the action is given by

R
S[gab, V] =/f§—n)\/—g dx + Smatt[abs V] (1) Matter domination era in R" gravity.

where G = 1, ¢ = 1 and k = 8m. Varying the action with respect to g2, We integrate the differential equations starting at some redshift, by assuming

1
lrRRab - Efgab _ (Vavb — 8ab )fR — ’("!Tab ’ (2)

matter domination for R" models. We find that varying them in several ways

it turns out impossible to recover the actual abundances of the different

where fg = 9gf, O = g2’V _,V,, and T, is the EMT for matter. components at present time while having an adequate accelerating phase.

The trace yields a second order equation for the Ricci scalar This means that compared to the ACDM model, the Universe expands faster
or slower depending on n but it never reproduces the correct accelerated

R = 3fon [“T — 3fRRR(VR)2 + 2f — RfR] : (3) expansion and matter domination eras within the same model; it reproduces

frR _ _
where T := T2 Using (3) in (2) we find ?Zne or the other in the best <“>H\f scenanos 1but not both.
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Figure 3: Evolution of Qatt, 2x and Q2,,q4 for n = 1.01, n = 1.3 and n = 2 and the total
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Figure 1: f(R) Models, U(®) in the Einstein frame and V(R) Shafieloo et al. proposed a diagnostic by using the Om(z) function at two

different points. This way we can take observations about the determination

F(R) Cosmology of H(z) at several redshifts

h?(z;) — h*(z)
» We focus now on homogeneous and isotropic space-times described by the (1+2z)3—(1+z)3

FRW metric, Taking the observed values at z; = 0, zo = 0.57 and z3 = 2.34 with
_ H=70.6+3.2 92.4 £+ 4.5 and 222 4 7km/sec/Mpc respectively. The
ds’ = —dt® + az(t) " + v’ (dgz + sin’ Hd(Pz) two-point relation gives
- Omhz(zl; z;) = 0.124 + 0.045,
: _ 1 . Omh?(zy; z3) = 0.122 + 0.01, (10)
R = —3HR — [3fRRRR2 4 2f — frRR + RT} , Omh2(z,; z3) = 0.122 + 0.012,

iR while for ACDM the value is Omh? = 0.1426 (constant) with P = 0.98
[ .1 ] —KkTY Q. (z,z) Omh*(z,z) X%t P(f(R))
frRRHR — 6 (frRR —f)| = 3f 3 (z1, 22) 0.131

T 024 (z1,2z3) 0123 0041 0.16

H = —H2 -+ l fRRHR : f | adl t (22,23) 0.123

fr 6 3 (z1, 22) 0.126
025 (z1,23)  0.123 0013  0.09

(22, 23) 0.123
Table 2: Values for the two points two-point relation Omh?(zy, z5) for the Starobinsky (first) and
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Omhz(z;; Zj) — (9)

From Eq. (3) we find

And the field equations are
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