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Abstract

In this poster we are presenting the results of several works where f(R)
gravity is revisited. The main goal of these papers has been the
understanding of this kind of gravity as a geometric theory so we avoid the
mapping to the scalar tensor representation which could present some
countroversies, mostly regarding to the multivalued potentials.

Introduction

I Several modifications of gravity have been proposed in order to explain the
acceleration of the Universe, however it is not clear if behind these
generalizations of the Einstein-Hilbert action there is a modification or
extension of some physical principle. Therefore, there is not a formal
framework to guide the exploration of these models. f(R) theories of gravity
are perhaps the most straightforward modification of general relativity
providing an extra geometric component which, in some cases, reproduces
this acceleration.

f(R), field equations

The dependence of the Ricci scalar in f(R) is a general function which will
be defined in order to reproduce observations, the action is given by

S[gab, ψ] =

∫
f(R)

2κ

√
−g d4x + Smatt[gab, ψ] , (1)

where G = 1, c = 1 and κ ≡ 8π. Varying the action with respect to gab,

fRRab −
1

2
fgab − (∇a∇b − gab2) fR = κTab , (2)

where fR = ∂Rf, 2 = gab∇a∇b and Tab is the EMT for matter.
The trace yields a second order equation for the Ricci scalar

2R =
1

3fRR

[
κT− 3fRRR(∇R)2 + 2f − RfR

]
, (3)

where T := Ta
a. Using (3) in (2) we find

Gab =
1

fR

[
fRR∇a∇bR+fRRR(∇aR)(∇bR)−

gab

6

(
RfR+f +2κT

)
+κTab

]
.

(4)
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Figure 1: f(R) Models, U(Φ) in the Einstein frame and V(R)

F(R) Cosmology

I We focus now on homogeneous and isotropic space-times described by the
FRW metric,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (5)

From Eq. (3) we find

R̈ = −3HṘ−
1

3fRR

[
3fRRRṘ2 + 2f − fRR + κT

]
, (6)

And the field equations are

H2 +
k

a2
+

1

fR

[
fRRHṘ−

1

6
(fRR− f)

]
=
−κTt

t

3fR

, (7)

Ḣ = −H2 +
1

fR

(
fRRHṘ +

f

6
+
κTt

t

3

)
(8)
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The EOS for the Geometric Dark Energy (GDE)

EMTX Energy-density and presure of GDE

ρ̃X = A
κfR

[
1
2

(fRR− f)− 3fRRHṘ + κρ
(
1− BfR

A

)]
ATtot

ab − BTab

p̃X = − A
3κfR

[
1
2

(fRR + f) + 3fRRHṘ− κ
(
ρ− 3prad

BfR

A

)]
Table 1: Geometric dark energy (GDE) variables in terms of the scalar functions A and B. The

different definitions of the EMT, energy-density, pressure and EOS of GDE are obtained from the

quantities A with (A : 1, f0
R, fR, 1) and B (B : 1, 1, 1, f−1

R ) in that order. Definitions III and IV

produce the same EOS since BfR/A = 1 in both cases while the factor A outside the brackets

cancels out when taking the ratio of the pressure and the energy-density and they are not conserved.

Definition I gives the relation: ωX = 3H2−3κ prad−R
3(3H2−κρ)

.
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Figure 2: Evolution of ωX for Hu-Sawicki and Starobinsky f(R) models for the three definitions.

Matter domination era in Rn gravity.

We integrate the differential equations starting at some redshift, by assuming
matter domination for Rn models. We find that varying them in several ways
it turns out impossible to recover the actual abundances of the different
components at present time while having an adequate accelerating phase.
This means that compared to the ΛCDM model, the Universe expands faster
or slower depending on n but it never reproduces the correct accelerated
expansion and matter domination eras within the same model; it reproduces
one or the other in the best of scenarios but not both.
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Figure 3: Evolution of Ωmatt, ΩX and Ωrad for n = 1.01, n = 1.3 and n = 2 and the total

EOS ωtot in Rn gravity. For reference the ΛCDM model are included.

The Om(z) function as a test.

Shafieloo et al. proposed a diagnostic by using the Om(z) function at two
different points. This way we can take observations about the determination
of H(z) at several redshifts

Omh2(zi; zj) =
h2(zi)− h2(zj)

(1 + zi)3 − (1 + zj)3
. (9)

Taking the observed values at z1 = 0, z2 = 0.57 and z3 = 2.34 with
H = 70.6± 3.2, 92.4± 4.5 and 222± 7km/sec/Mpc respectively. The
two-point relation gives

Omh2(z1; z2) = 0.124± 0.045,

Omh2(z1; z3) = 0.122± 0.01, (10)

Omh2(z2; z3) = 0.122± 0.012,

while for ΛCDM the value is Omh2 = 0.1426 (constant) with P = 0.98

Ω0
m (zi, zj) Omh2(zi, zj) χ2

St P(f(R))
(z1, z2) 0.131

0.24 (z1, z3) 0.123 0.041 0.16
(z2, z3) 0.123
(z1, z2) 0.126

0.25 (z1, z3) 0.123 0.013 0.09
(z2, z3) 0.123

Table 2: Values for the two points two-point relation Omh2(z1, z2) for the Starobinsky (first) and

Hu-Sawicki (second) f(R) models. Column 3 is the value of Omh2(z1, z2). In column 4 is the

value of χ2
f(R). In column 5 is the cumulative probability.
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