Direct Searches for WIMP Dark Matter

Marc Schumann AEC, Universität Bern

COSMO 2015, Warsaw, September 7, 2015

marc.schumann@lhep.unibe.ch
www.lhep.unibe.ch/darkmatter

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

Dark Matter Search

Indirect Detection Production @Collider

f

Elastic Scattering of WIMPs off target nuclei

Elastic Scattering of WIMPs off target nuclei

Elastic Scattering of WIMPs off target nuclei

Elastic Scattering of WIMPs off target nuclei \rightarrow nuclear recoil $\frac{WIMP}{v - 230 \text{ km/s}} + \frac{WIMP}{v - 200 \text$

→ electronic recoil

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
local WIMP number density
velocity-averaged scatt. X-sectionDetectorLocal DM
Density
 $\rho_{\chi} \sim 0.3 \text{ GeV/}c^2$ N
Physics

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

WIMP-Nucleon Interactions

A priori, we do not know how dark matter WIMPs interact with ordinary matter

Parametrization of interactions leading to WIMP-nucleus scattering:

Form factors describe

Summary: Tiny Rates R < 0.01 evt/kg/day $E_R < 100 \text{ keV}$

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good signal / background discrimination

We are dealing with

- extremely **low rates** (1 1000 Hz)
- extremely low thresholds (~2 keV)
- extremely low radioactive backgrounds

Background Sources everywh

muons

Background Suppression

A Avoid Backgrounds Use of radiopure materials

Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

Background Suppression

- A Avoid Backgrounds Use of radiopure materials
 - Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

B Use knowledge about expected WIMP signal

Examples:

- scintillation pulse shape
- charge/light ratio
- ionization yield

Direct WIMP Detection

too many experimental efforts to report on \rightarrow you will see a biased selection

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

The current WIMP landscape

Annual Modulation

Drukier, Freese, Spergel, PRD 33, 3495 (1986)

- \rightarrow search for annually modulating signal (3% effect)
- \rightarrow does not require many physical assumptions

Annual Modulation: DAMA/Libra

- PMTs coupled to Nal(Tl) Scintillators @ LNGS
 → extremely clean background necessary
- looks for annual modulation
- large mass and exposure: 1.17 t \times y
- DAMA finds annual modulation @ 9.3 σ C.L.
- BUT: no ER/NR discrimination!

Interpretation as Dark Matter interaction is in conflict with numerous other experiments \rightarrow KIMS, ANAIS, DM-Ice, Sabre will check directly

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Annual Modulation: DAMA/Libra

- PMTs coupled to Nal(Tl) Scintillators @ LNGS
 → extremely clean background necessary
- looks for annual modulation
- \bullet large mass and exposure: 1.17 t $\times y$
- \bullet DAMA finds annual modulation @ 9.3 σ C.L.
- BUT: no ER/NR discrimination!

Interpretation as Dark Matter interaction is in conflict with numerous other experiments → KIMS, ANAIS, DM-Ice, Sabre will check directly

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Reconcile DAMA/Libra with the null-results from other experiments assuming **leptophilic** dark matter? → DAMA might see electronic recoils

Examples:

Kopp et al., PRD 80, 083502 (2009) Changet al., PRD 90, 015011 (2014) Bell et al., PRD 90, 035027 (2014) Mirror dark matter: Foot, Int.J.Mod.Phys. A29, 1430013 (2014) Luminous dark matter: Feldstein et al., PRD 82, 075019 (2010)

DAMA vs XENON: Average Rates XENON100, Science 349, 851 (2015)

even if dark matter only interacts with electrons at tree-level, loop induced dark matter-hadron interactions dominate \rightarrow back the the usual NR limits *PRD 80, 083502 (2009)*

Axial-vector couplings $\vec{A} \otimes \vec{A}$: loop-effects vanish, WIMP-electron couplings are not suppressed

Analysis

- assume 100% modulation (conservative but hard to find a model)
- convert DAMA modulation spectrum to Xe; I and Xe have very similar electron structure
- compare rates during 70 days in Summer

XENON100 excludes DAMA as being due to

- WIMP-electron axial-vector couplings at 4.4σ (interpreting all XENON100 events as signal)
- luminous dark matter at 4.6σ
- mirror dark matter at 3.6σ

DAMA vs XENON: Modulation

Cryogenic Detectors: SuperCDMS

@ Soudan Lab (USA) → later: SNOLAB measure charge and heat (phonons): *E* deposition → temperature rise ΔT

Crystals: **Ge**, (**Si**) cooled to few mK – low heat capacity $-\Delta T \sim \mu K$ Very good discrimination

✓ BUT: need to reject
 Surface events

similar: **EDELWEISS** @ Modane new low-mass limit also challenges CDMS-II-Si *arXiv:1504.00820*

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

Rejection of Surface Events

First results on low-mass WIMPs

SuperCDMS @ SNOLAB

- selected by US NSF-DOE downselection in 2014
- aim for 50 kg-scale experiment (cryostat can accomodate 400 kg) low threshold → focus on 1-10 GeV/c² mass range
- Improvements: deeper lab, better materials, better shield, improved resolution, upgraded electronics, active neutron veto?
- 100 x 33.3 mm IZPs (1.4 kg Ge, 0.6 kg Si) \rightarrow fabrication protocol established

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Towards lowest WIMP masses

CRESST @ LNGS

- reads phonons and scintillation light
- target: CaWO₄ \rightarrow multi-element material
- successful background reduction; data taking since 2013
- EPS-HEP preliminary result: detector with 300 eV threshold
- focus on low-mass WIMPs

DAMIC @ SNOLAB

- target: Si \rightarrow use thick CCDs
 - \rightarrow need only 3.6 eV to create e⁻-hole pair
- low target mass but very low thresholds
 - → low mass WIMPs
- particle ID via track information

preliminary result:

- 36 days of 3 CCDs up to 675 µm thick (2.9 g)
- \rightarrow @ 3 GeV/c²: 10x better than DAMIC (2012)
- DAMIC100 will start data taking in 2015

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

Spin dependence: Threshold Detectors

PICO @ SNOLAB

- PICO = PICASSO + COUPP
- bubble chamber filled with superheated C3F8
 - → very good sensitivity to spin-dependent interactions
 - \rightarrow bubble forms only above a threshold energy
- almost "immune" to electronic recoils; reject alphas by acoustic discimination N. J. Phys.10, 103017 (2008)
- challenge: correlation of candidate events with events in previous expansions
- PICO-2L: low threshold down to 3 keVnr

PICO-60: CF3I data analysis ongoing \rightarrow C3F8 Upgrade plan: PICO-250 \rightarrow SD reach $\sim 10^{-42}$ cm² M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

$\sigma = \frac{32G_F^2 m_r^2}{\pi} \frac{J+1}{J} \left[a_p \left\langle s_p \right\rangle + a_n \left\langle s_n \right\rangle \right]^2$			
Isotope	Spin	Unpaired	λ ²
⁷ Li	3/2	р	0.11
¹⁹ F	1/2	р	0.863
²³ Na	3/2	р	0.011
²⁹ Si	1/2	n	0.084
⁷³ Ge	9/2	n	0.0026
127	5/2	р	0.0026
¹³¹ Xe	3/2	n	0.0147

Liquid Noble Gases: Detector Concepts

Noble Gas: Single Phase Detectors

+ no high voltage, very high light yield – O(cm) position resolution, no double scatter rejection

XMASS @ Kamioka (JP)

LXe

- 832 kg LXe target, 642 PMTs
- very high light yield, low threshold (0.5 keVee)
 BUT: no possibility to reject NRs
- results: (low-mass) WIMPs, inelastic WIMP scat., axions, bosonic superWIMPs, rare decays
 → summary: arXiv:1506.08939
- background reduced after commissioning run
 - \rightarrow stable operation since 2 years
- plans towards XMASS-1.5t and XMASS-II (24t)

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

DEAP-3600 @ SNOLAB (CA)

LAr

- light pulse-shape for discrimination
 3×10⁻⁸ achived 43-86 keVee
 - \rightarrow prediction: 10⁻¹⁰ above 15 keVee in DEAP-3600
- 3.6t liquid argon target;
 high ³⁹Ar background when using ^{nat}Ar (~1 Bq/kg)
- under commissioning; fill with LAr in summer first data by late 2015; first DM result in 2016
- sensitivity: 1×10^{-46} cm² @ 100 GeV/c²
- if experiment successful \rightarrow "upgrade" to 50t

Noble Gas: Single Phase Detectors

+ no high voltage, very high light yield – O(cm) position resolution, no double scatter rejection

XMASS @ Kamioka (JP)

LXe

- 832 kg LXe target, 642 PMTs
- very high light yield, low threshold (0.5 keVee)
 BUT: no possibility to reject NRs
- results: (low-mass) WIMPs, inelastic WIMP scat., axions, bosonic superWIMPs, rare decays
 → summary: arXiv:1506.08939
- background reduced after commissioning run
 - \rightarrow stable operation since 2 years
- plans towards XMASS-1.5t and XMASS-II (24t)

DEAP-3600 @ SNOLAB (CA)

LAr

- light pulse-shape for discrimination
 3×10⁻⁸ achived 43-86 keVee
 - \rightarrow prediction: 10⁻¹⁰ above 15 keVee in DEAP-3600
- 3.6t liquid argon target;
 high ³⁹Ar background when using ^{nat}Ar (~1 Bq/kg)
- under commissioning; fill with LAr in summer first data by late 2015; first DM result in 2016
- sensitivity: 1×10^{-46} cm² @ 100 GeV/c²
- if experiment successful \rightarrow "upgrade" to 50t

Liquid Noble Gases: Detector Concepts

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Dual Phase TPC

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

LXe: Existing dual phase detectors

XENON100 @ LNGS (IT)

Astropart. Phys. 35, 573 (2012)

- 62 kg LXe, 225×34 kg exposure
- reached WIMP science goal
- inelastic DM, spin-dependent,
- modulation. axions, ...
- still running as testbench

LUX @ SURF (USA) NIM A 704, 111 (2013)

- best sensitivity above ~6 GeV/c²
- 250 kg LXe: 85d×118kg exp.
- high LY, inside water shield
- currently taking data

PandaX-I @ CJPL (CN)

Sci.China Phys.Mech.Astron. 57 (2014) 1476

- optimized for low-mass WIMPs
- 120 ka LXe: $80d \times 54$ ka exposure
- final low-mass limit published;
- experiment stopped for upgrade

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

LAr TPC: DarkSide-50 @ LNGS PLB 743, 456 (2015) \rightarrow working towards a ³⁹Ar-depleted target (factor ~300)

Upcoming Detectors

PandaX-II @ CJPL

- new SS cryostat with lower radioactivity
- 1.3 tons total mass TPC: 60cm×60cm,
 600 kg active target
 ~300 kg fiducial target
- 110 R11410 PMTs, active veto
- aim for improved light yield
- under commissioning
 - \rightarrow science data in 2015

stat with

LZ @ SURF

- LZ = LUX+ZEPLIN selected by 2014 US DOE-NSF downselection
- 50× larger than LUX
 10t total, 7t active target, 5.6t fiducial target
- 488 R11410 PMTs
- 2015: started procurement of Xe, PMTs, ... 2019: expected start of comissioning
- goal: 2×10⁻⁴⁸ cm² @ ~50 GeV/c² after 15 t×y exp

XENON1T @ LNGS

Distant a

1.1

XENON1 enlightening the n

XENON1T

dual-phase LXe TPC

- total mass ~3.2 t
- active mass ~2.0 t
- fiducial mass: ~1 t

TPC made from OFHC and PTFE

248 photomultipliers

- Hamamatsu R11410-21
- low background arXiv:1503.07698
- high QE (36% @ 178nm)

- extensive testing in cryogenic environments *JINST 8, P04026 (2013)*

Low-background stainless steel cryostats

XENON1T -> XENONnT

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

The XENON Future

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

DAR\//IN

The XENON Future

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

DARWIN The ultimate WIMP Detector

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

- aim at sensitivity of a few 10⁻⁴⁹ cm², limited by irreducible v-backgrounds
 - → many non-WIMP science channels (e.g., neutrinos, axions, SN, ...)
- international consortium, 21 groups
 - → R&D ongoing

- DARWIN is on the European astroparticle physics APPEC roadmap and endorsed by the Swiss State Secretariat (SERI)
- Timescale: start after XENONnT

www.darwin-observatory.org

DARWIN WIMP Sensitivity

arXiv:1506.08309 accepted by JCAP

- exposure: 200 t x y; all backgrounds included
- likelihood analysis (~99.98% ER rejection @ 30% NR acceptance)
- S1+S2 combined energy scale, LY=8 PE/keV, 5-35 keVnr energy window

 \rightarrow also sensitive to inelastic WIMP interactions

WIMP Spectroscopy

 $2 \times 10^{-48} \text{ cm}^2$

 $2 \times 10^{-47} \text{ cm}^2$

WIMP: 30 GeV/c², $\sigma = 2 \times 10^{-48}$ cm² 27 signal events in box

Capability to reconstruct WIMP parameters

- m_x=20, 100, 500 GeV/c²
- 1σ/2σ CI, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses >500 GeV/c²

The WIMP Landscape today

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Exciting times ahead of us

M. Schumann (AEC Bern) – Direct Seaches for WIMP Dark Matter

Backup

CoGeNT: excess gone

440 g HPGe p-type detector

J. Davis et al., JCAP 08, 014 (2014)

keVee

CoGeNT: NULL result excluded by 1.9σ

Kelso: best fit achieved w/o signal

(no improvement when considering streams)

- Davis: detection crucially depends on equally-well motivated choices for the fraction of bulk events
 - \rightarrow marginalize over possibilities
 - \rightarrow end up with <1 σ evidence

LXe: Non-WIMP Channels

Coherent Neutrino Nucleus Scattering

- \rightarrow not observed yet
- → 200 t×y: ~200 evts > 3 keVnr ~25 evts > 4 keVnr
- Low E solar neutrinos: pp, ⁷Be
 - \rightarrow test solar model; test neutrino models
 - \rightarrow 1% stat. precision in 100 t x y
- Solar axions and dark matter ALPs
 - → alternative dark matter candidates
 - → couple to electrons via axio-electric effect

Supernova Neutrinos

- \rightarrow sensitive to all neutrino species (CNNS)
 - (→ complementary information to large-scale neutrino detectors)
- → O(10) events for ~18 Msun SN @ 10 kpc
- Neutrinoless Double-Beta Decay
 - → leption number violating process
 - → access to neutrino mass, neutrino hierarchy
 - → no ¹³⁶Xe enrichment required

M. Schumann (AEC Bern) - Direct Seaches for WIMP Dark Matter

