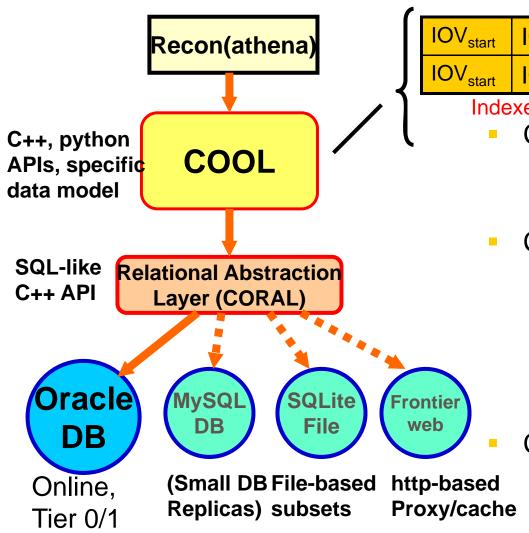


ATLAS reconstruction jobs & conditions DB access

Richard Hawkings (CERN)

Distributed database operations workshop, CERN, 11/11/08


- Conditions database basic concepts
 - Types of data ...
- Access in Athena
 - Athena reconstruction jobs
 - Conditions data access
 - Scaling and problems
 - Possible improvements

Conditions DB - basic concepts

COOL-based database architecture - data with an interval of validity (IOV)

IOV _{start}	IOV _{stop}	channel1	(tag1)	payload1
IOV _{start}	IOV _{stop}	channel2	(tag2)	payload2

Indexed

- COOL IOV (63 bit) can be interpreted as:
 - Absolute timestamp range (e.g. for DCS)
 - Run/Lumiblock range (1 LB ~ 1 minute)
- COOL payload defined per 'folder'
 - Ttuple of simple types \equiv 1 DB table row
 - Can also be a reference to external data
 - Use channels for multiple instances of data in 1 folder (e.g. 1000 HV channels)
 - COOL tags allow multiple data versions
 - COOL folders organised in a hierarchy
 - Tags in the hierarchy referenced from a global 'top-level' tag

Overview - types of conditions data

- Detector calibration, configuration and status data stored directly in COOL
 - Volume dominated by large CLOB objects ~O(20 MB) for muon calibration
 - Also many smaller objects
 - Typically valid for at least one run update frequency ~ 1 per day or less
- Detector control system (DCS/'Slow controls') data stored directly in COOL
 - Expect O(1-2 GB/day) DCS data, distributed over <50 COOL folders
 - IOV valid from a few seconds to a few hours depends on stability, filtering etc
 - Data is a subset of that available in PVSS Oracle what is needed for Athena recon
 - Fit 1-2 GB/day size constraints (set by storage @ Tier-1 and Oracle streams bandwidth)
 - This dominates the data volume in Oracle
- Calibration data stored in referenced POOL files (COOL+POOL)
 - Volume in COOL is small (only references to POOL files via GUID/offset)
- All data volumes are approximate
 - Data volume is still ramping up as subdetectors increase storage of conditions data and use in reconstruction jobs
 - Requested space for 1 TB new data (table+index) in 2009, includes safety factor

Athena reconstruction job - what is it?

- Takes a RAW data file written by online, reconstructs to ESD and AOD files used by physics analysis
 - Characteristics depend on type of data taking (cosmics, colliding beams)
 - 1 RAW file is O(few 100 MB)-O(few GB) takes a few hours CPU to reconstruct
 - E.g. file with 1000 1.6 MB events, ~15 seconds/event 4 hour job
 - Trade-off between file length (storage likes few big files) and recon job wall-time
 - File contains event data with a timespan of ~30 seconds to several minutes
 - DAQ system divides data into 'data streams', which fill at rates from a few Hz to 50 Hz
 - Hope for 'balanced' streams in collision data taking
 - One 'run' can last several hours (divided into ~1 min lumiblocks), 1000s files/run
- What conditions data is required by reconstruction job?
 - Detector calibration and configuration data, indexed by run/LB
 - But typically changes only once per run only one set required per job
 - DCS data, indexed by timestamp
 - Potentially changes every second ... many sets of data per job
 - Athena can bulk-read a 10-minute 'chunk' of data in one go, cache it for later use avoid recontacting database every few events

Athena job database access

- Configuration for October 2008 cosmics data processing
 - Data from around 70 COOL folders read, < 10 with DCS-type data (more coming)
 - Data organised in about 12 COOL schema (one per detector)
 - In COOL, each schema requires a separate Oracle session to read it
- Phases of data access within Athena
 - Job starts... reading configuration, loading shared libraries etc.
 - After ~1 minute: IOVDbSvc initialise
 - Go through configured list of COOL folders, check existence, read meta-data, tags
 - Sessions opened 'on demand', not ordered by schema, so gradual open of more sessions up to max of 12; then all are closed at end of initialise
 - Athena intialisation continues, then start first event processing
 - For each folder, read the actual data requested (COOL browseObjects calls)
 - Again happens 'on demand' (on callbacks and explicit data requests) not ordered by schema, gradual increase of sessions up to max of 12, over a few minutes
 - All sessions/connections closed at end of first event
 - Can take ~ 10 minutes wall-clock time from job start to end of first event
 - Two 'bursts' of connections/sessions up to maximum of ~12, only one active at a time
 - Normally, no more database activity for rest of job... but Athena will transparently reopen connections if required (e.g. a file with a long timespan, multi-run file)

Scaling and problems

- Expect O(2000) jobs running in parallel at Tier-0, O(1000) at Tier-1s
 - Critical parameter is 'job start' rate, not nunber of parallel jobs
 - E.g. Tier-0 throttles to 10-20 jobs launched/minute (8/min required for 2000 4 hour jobs)
 - Harder to do in Tier-1 production environment want to fill an empty farm, fluctuating load due to other production work - can we introduce load-based throttling?
 - Indirect measurements indicate reading O(40 MB) from database for each job
- Problems with current Athena access scheme
 - Originally designed for 'on-demand' access, connection kept throughout job
 - Various 'sticking plaster' improvements (close connections at end of initialise and event 1)
 - Trade off between open-close cycles and having idle connections open
- Possible improvements
 - Rewrite Athena IOVDbSvc to order and group data requests by schema
 - Keep only one connection open at a time, grab all needed data 'speculatively' and cache
 it locally on client major reimplementation of IOVDbSvc needed
 - Take opportunity to also 'align' query IOVs, to improve performance with Frontier
 - Stuck with 12 connections per job unless COOL can share sessions across schema
 - Timescale for implementation with OracleAccess? / or wait for CORAL server?