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The idea
Your mind will answer most questions

if you learn to relax…  

William S. Burroughs



First, the problem…
the Hierarchy Problem as explained 

to condensed-matter physicists
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● Where we see in nature the EWSB scale?
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The SM:  an EFT below MP (sets the mass scale)
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One solution: 
⟨h⟩/MP ➞ 0 is a special line

Enhanced symmetry ☛ Supersymmetry

Hierarchy problem:  Why nature is so close to the critical line?

Another solution: 

☛ Higgs as a composite state
from a new strong dynamics

(as pions in QCD)

⟨h⟩≪M
P

(“dead dogs don't bite”)

In both cases, TeV new-physics expected!
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No new particles seen, 
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no deviations on Higgs couplings seen, 
no deviations on Z/W couplings seen, 

no WIMP detected,
no EDMs seen,

Hierarchy problem



New-Physics at the TeV

Pros Cons

No new particles seen, 
no new flavor-violations seen,

no deviations on Higgs couplings seen, 
no deviations on Z/W couplings seen, 

no WIMP detected,
no EDMs seen,

Hierarchy problem

so far, expectations≠reality  ⇒ little crisis!
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New 3rd possibility: 
1) α &β are fields ➞ 𝝓 & σ
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there must be ~1032 local minima !
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New 3rd possibility: 
1) α &β are fields ➞ 𝝓 & σ

Hierarchy problem:  Why nature is so close to the critical line?

𝝓(t)

σ(t)

2) they have local minima 
populating the broken phase

3) Cosmological evolution 
settles them in a minimum 

close to the critical line

The hierarchy problem ☛ A historical accident

time evolution
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Idealized models have a useful role to play, 

as ways to clarify your thinking 

Paul Krugman 
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Field-dependent Higgs mass

𝟇  must settle close to 𝟇c

Higgs-mass parameter

m2
H(�)|H|2m2

H |H|2
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H(�) = ⇤2

✓
1� g�

⇤

◆
e.g.

Λ = sets the UV cut-off scale 
of the SM (MP?)

Notice that large field excursions for 𝟇 needed:  𝟇~Λ/g≫Λ

𝟇c = Λ/g      (g≪1)
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Higgs (h) & axion-like (𝟇) potential:

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:

V (�, h) = ⇤3g�� 1

2
⇤2

✓
1� g�

⇤

◆
h2 + ✏⇤4

c

✓
h

⇤c

◆n

cos(�/f) + · · · , (1)

where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier

1
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

⇤/g

Cosmological evolution:
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(�M2 + g�)|h|2 + V (g�) +
1
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where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.
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h, is positive. During inflation � will slow-roll, scanning the physical Higgs
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
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(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
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where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
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Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:
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where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
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gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.
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where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes
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gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.
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the e↵ective mass-squared of the Higgs, m2
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Field-dependent amplitude:

2 Double scanner mechanism

The key new ingredient of our proposal, with respect to [4], is a second scanning field, that

we call �. The full potential, up to terms of order ✏, g� and g, is given by
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with 0 < g, g�, ✏ ⌧ 1, while ↵, � and c�, c� are O(1) positive coe�cients. We assume that

all terms of Eq. (4) are generated at the cut-o↵ scale ⇤. For simplicity and clarity, we are

only considering linear terms in g�/⇤, but we could have taken a generic function of g�/⇤
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Figure 2: Sketch of the four stages in the evolution of �, marked by the blue dot, in the time-

dependent e↵ective potential for � obtained after integrating out � and H but corresponding

to the same potential as in Fig. 1. (Arbitrary units and scales.)

IV) Finally, � reaches the other side of the green-band (where A becomes large again) and

gets stuck in a minimum from A cos(�/f) as in the model of [4]. The field � continues

going down, making A grow until � finds its own minimum.

For the same potential shown in Fig. 1, we show in Fig. 2 four snapshots of how � evolves

in the time-dependent potential V (�) ⌘ V (�, �(t), h(�)), obtained after integrating out �

and h. We are choosing four representative time values corresponding to the four stages

I-IV. At the stage I and II, this potential has two A ⇡ 0 regions moving towards each other

(as indicated by the arrows), that merge at stage III and disappear at stage IV.

To understand under which conditions the potential of Eq. (4) has the shape shown in
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Conditions on parameters:

potentially spoil our CHAIN mechanism. For instance, terms like4 ✏2⇤4 cos2(�/f) or

✏2⇤3g� cos2(�/f), depend quadratically on cos(�/f), and therefore their amplitudes

cannot be cancelled by � simultaneously to A cos(�/f). These terms are dangerous

since they give a barrier to � at values that can be above the critical �c. To make sure

that they remain subdominant to the Higgs barrier of Eq. (4), we must demand

✏ . v2/⇤2 . (14)

This condition also ensures that the contribution to the Higgs mass coming from the

✏⇤2|H|2 cos(�/f) term in the potential is at most of electroweak size and does not spoil

the tracking behaviour (see footnote 1).

2. � must be trapped by the Higgs barrier. As in the model of [4], the nonzero Higgs field

must be the only one responsible for stopping � from sliding any longer. This is the

requirement in Eq. (2) that, for our case n = 2 and ⇤ = ⇤c, reads g⇤3 ' ✏⇤2v2/f .

This can be used to obtain the electroweak scale as a prediction from the model in

terms of microscopic parameters:

v2 ' g⇤f

✏
. (15)

We will also use this relation later on to get rid of ✏ in terms of the other parameters

of the model, so that the electroweak scale is reproduced correctly.

3. Inflation is independent of the � and � evolution. We assume for simplicity that

inflation is driven by another field, the inflaton, that does not receive any back-reaction

from the evolution of � and �. This is possible under the condition that the typical

energy density carried by � and � remains smaller than the inflation scale, i.e.,

⇤2

MP

. HI , (16)

where MP is the reduced Planck mass, MP ' 2.4⇥ 1018GeV.

4. Classical rolling dominates over quantum jumping. We are assuming that the cosmo-

logical evolution of � and � is dominated by classical physics. It is therefore essential,

for the consistency of our solution, that during the cosmological evolution of our system

the quantum fluctuations of the fields, typically of size HI , remain smaller than the

4See Appendix A for the possible origin of these terms in a particular UV completion.
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to avoid to be dominated by terms like

to avoid quantum wiggles spoiling classical rolling

●

●

for the case of �. This condition for classical rolling [4] simply reads

H3
I . g�⇤

3 , (17)

for �. Due to Eq. (11), the classical-rolling condition for � is automatically guaranteed

whenever Eq. (17) is fulfilled (we assumed that c� ⇠ c� ⇠ 1).

5. Inflation lasts long enough for complete scanning. In order for the above mecha-

nism to work for generic initial field configurations, it is essential that the range

scanned by � and � during inflation be of order or larger than ⇤/g and ⇤/g� re-

spectively. This is ensured by requiring a long enough period of inflation, namely,

Ne�� ⇠ NeH
�2
I dV/d� & ⇤/g�, which leads to

Ne &
H2

I

g2�⇤
2
. (18)

The typical duration of the di↵erent stages of the cosmological evolution of � is of the

same order, with the exception of stage III, which is much shorter, of order N III
e ⇠

(gf/✏⇤)Ne.

Combining these various consistency conditions, together with Eq. (11), we obtain that the

couplings g� and g are bounded to the interval:

⇤3

M3
P

. g� . g . v4

f⇤3
. (19)

Since f cannot be much smaller than ⇤, as this latter is the scale at which the cos(�/f)

term is generated, we obtain from Eq. (19) an upper bound on the cut-o↵ of our model:

⇤ . (v4M3
P )

1/7 ' 2⇥ 109 GeV . (20)

The bound in Eq. (19) defines the region of the parameter space of the model consistent

with a natural solution to v ⌧ ⇤. This is shown in Fig. 3, where, for concreteness, we have

taken f = ⇤ and g� = 0.1g.

4 Quantum spreading

The discussion of the cosmological evolution in Section 2 was fully classical. As we saw

in more detail in the previous Section, the model parameters can be chosen to ensure that

11
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that they remain subdominant to the Higgs barrier of Eq. (4), we must demand

✏ . v2/⇤2 . (14)

This condition also ensures that the contribution to the Higgs mass coming from the

✏⇤2|H|2 cos(�/f) term in the potential is at most of electroweak size and does not spoil

the tracking behaviour (see footnote 1).

2. � must be trapped by the Higgs barrier. As in the model of [4], the nonzero Higgs field

must be the only one responsible for stopping � from sliding any longer. This is the

requirement in Eq. (2) that, for our case n = 2 and ⇤ = ⇤c, reads g⇤3 ' ✏⇤2v2/f .

This can be used to obtain the electroweak scale as a prediction from the model in

terms of microscopic parameters:

v2 ' g⇤f

✏
. (15)

We will also use this relation later on to get rid of ✏ in terms of the other parameters

of the model, so that the electroweak scale is reproduced correctly.

3. Inflation is independent of the � and � evolution. We assume for simplicity that

inflation is driven by another field, the inflaton, that does not receive any back-reaction

from the evolution of � and �. This is possible under the condition that the typical

energy density carried by � and � remains smaller than the inflation scale, i.e.,

⇤2

MP

. HI , (16)

where MP is the reduced Planck mass, MP ' 2.4⇥ 1018GeV.

4. Classical rolling dominates over quantum jumping. We are assuming that the cosmo-

logical evolution of � and � is dominated by classical physics. It is therefore essential,

for the consistency of our solution, that during the cosmological evolution of our system

the quantum fluctuations of the fields, typically of size HI , remain smaller than the

4See Appendix A for the possible origin of these terms in a particular UV completion.
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for the case of �. This condition for classical rolling [4] simply reads
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I . g�⇤

3 , (17)

for �. Due to Eq. (11), the classical-rolling condition for � is automatically guaranteed

whenever Eq. (17) is fulfilled (we assumed that c� ⇠ c� ⇠ 1).
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I dV/d� & ⇤/g�, which leads to
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2
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The typical duration of the di↵erent stages of the cosmological evolution of � is of the
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Combining these various consistency conditions, together with Eq. (11), we obtain that the
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The bound in Eq. (19) defines the region of the parameter space of the model consistent

with a natural solution to v ⌧ ⇤. This is shown in Fig. 3, where, for concreteness, we have

taken f = ⇤ and g� = 0.1g.
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The discussion of the cosmological evolution in Section 2 was fully classical. As we saw
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g� . g

not yet fully solving the hierarchy problem 
 but pushing Λ beyond LHC & future colliders reach !



1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

✏ = 10�45

✏ = 10�30

✏ = 10�15

✏ = 1

m� = 10�9GeV

.

quantum unstable potential

no classical rolling

m
� = 10 �18

GeV

m
� = 1GeV

m
� = 10 �2

GeV

m
� = 10 �9

GeV

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

1000 105 107 109
10-50

10-41

10-32

10-23

10-14

10-5

L HGeVL

g

m� = 10�33GeV

.

m� = 10�20GeV

.

✏ & v2/⇤2

Taking  gσ ~ 0.1g  &  f~Λ



Phenomenological consequences



Phenomenological consequences

● Nothing at the LHC to be discovered!

● Only BSM below Λ:   

𝝓 & σ:  Light scalars weakly-coupled to the SM  

mσ ~ 10-45 – 10-2 GeV

m𝝓 ~ 10-20 – 102 GeV

coupled to the SM through the Higgs:   

e.g.

𝛜 |H|2 cos 𝝓/f ,   g𝝓|H|2



Physics of the Slow-Rollers
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● Epochs of inflation

● Oscillations can affect the gravitational potential/waves:

Pulsar timing:

 Grav. waves from BH+Axion systems:

Structure formation:
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as the fields roll to their minima and pick up speed, the kinetic energy grows. When both

contributions are of similar size, one can properly talk about oscillating fields. This happens

for the Hubble value H . mi (i = �, �) or, equivalently, in a radiation-dominated universe,

at T i
osc ⇠

p
miMP . In that oscillating regime, the energy density scales as that of non-

relativistic matter, ⇢i(T ) ⇠ ⇢iini(T/T
i
osc)

3, where ⇢iini is the initial amount of energy at the

start of the oscillating regime (this is smaller than the original potential energy density, but

only by an order one factor).

Let us start considering the � field. We expect that during inflation � slowly rolled

down to its global minimum, somewhere in its ⇠ ⇤/g� range, as this requires a number of

e-folds similar to the Ne estimated in Eq. (18). Because of quantum e↵ects (see Section 4), �

reached the minimum with a spread
p
N eHI . We can use this result to estimate the typical

displacement from the minimum at the end of inflation:

(��)ini ⇠
p
N eHI .

This displacement is quite large though still smaller than ⇤/g�, and hence we can estimate

the amount of energy density as ⇢�ini ⇠ m2
�(��)2ini. Using Ne ⇠ H2

I /(⇤
2g2�), we finally get

⇢�ini ⇠ H4
I . The energy density stored in � oscillations today, relative to the critical energy

density, is then, using Eq. (16), ⌦�
>⇠ (4⇥ 10�27/g�)

3/2 (⇤/108 GeV)13/2 . The bound to avoid

universe overclosure (⌦� . 1), translates into

g� & 4⇥ 10�27

✓
⇤

108 GeV

◆13/3

. (31)

The contour ⌦� = ⌦DM is plotted in Fig. 3, limiting the excluded blue region. It shows that

� can be a good dark matter candidate in the region where the bound (31) is saturated, in

particular at large ⇤. For certain values of m�, there can be other cosmological constraints.

For example, for ⌦� & ⌦DM/20, the mass range 10�32 eV . m� . 10�25.5 eV is excluded by

structure formation [20], while masses around m� ⇠ 10�11 eV may be constrained by Black

Hole superradiance [14]. Interestingly, for the particular case m� ⇠ 10�24 eV, � could be

searched for by the SKA pulsar timing array experiment [19]. Let us finally notice that there

are ways to go around the bound (31), for instance, by assuming a late entropy production

after � has started to oscillate, as can occur if reheating is a very slow process such that

TRH < T �
osc [13].

The situation for � is rather di↵erent. At the end of its evolution, � is trapped in

a region with high barriers and its displacement from the minimum originates from the
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● Late decays of 𝝓, produced in the early universe, can affect Big Bang 
Nucleosynthesis, CMB or the (extra) galactic diffuse γ-ray background:

𝝓

Higgs boson into massive gauge bosons, which will be discussed later in detail. Using the

equivalence theorem and the Lagrangian eq. (1.58), one can write immediately the partial

decay width of the Higgs boson into two longitudinal Z bosons [or W bosons]

Γ(H → ZZ) ∼ Γ(H → w0w0) =

(
1

2MH

) (
2! M2

H

2v

)2 1

2

(
1

8π

)
→

M3
H

32πv2
(1.165)

where the first parenthesis is for the flux factor, the second for the amplitude squared, the

factor 1
2 is for the two identical final particles, and the last parenthesis is for the phase space

factor. For the decay H → WW , one simply needs to remove the statistical factor to account

for both W± states

Γ(H → W+W−) ≃ 2Γ(H → ZZ) (1.166)

The behavior, ΓH ∝ M3
H , compared to ΓH ∝ MH for decays into fermions for instance, is

due to the longitudinal components that grow with the energy [which is MH in this context].

H
V

V

• •
•

+ + + · · ·

Figure 1.16: Generic diagrams for the one– and two–loop corrections to Higgs boson decays.

Let us have a brief look at these decays when higher–order radiative corrections, involving

the Higgs boson and therefore the quartic coupling λ, are taken into account. Including the

one–loop and two–loop radiative corrections, with some generic Feynman diagrams shown

in Fig. 1.16, the partial Higgs decay width into gauge bosons is given by [121, 122]

Γtot ≃ ΓBorn

[
1 + 3λ̂+ 62λ̂2 + O(λ̂3)

]
(1.167)

with λ̂ = λ/(16π2). If the Higgs boson mass is very large, MH ∼ O(10 TeV), the one loop

term becomes close to the Born term, 3λ̂ ∼ 1, and the perturbative series is therefore not

convergent. Even worse, already for a Higgs boson mass in the TeV range, MH ∼ O(1 TeV),

the two–loop contribution becomes as important as the one–loop contribution, 3λ̂ ∼ 62λ̂2.

Hence, for perturbation theory to hold, MH should be smaller than about 1 TeV.

In addition, the partial decay widths become extremely large for a very heavy Higgs

particle. Indeed, taking into account only W and Z decay modes, the total width is

Γ(H → WW + ZZ) ∼ 500 GeV (MH/1 TeV)3 (1.168)
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● Table-top experiments (fifth-force, EPV) ?  Hopeless at present!

Indirect detection:
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FIG. 9. Bounds on the lifetime of a scalar DM, �, decaying to two photons. Regions as in Fig. 2.

Here ⌫
2

⌘ m
2

/m
DM

refers to the mass of the outgoing decay partner, in the case of a single

photon. The constraints on the lifetime for the decay to two photons are shown in Fig. 9.

B. Two-Body Decays with FSR

Two-body decays to charged particles produce photons through FSR. The di↵erential width

to photons is approximately given by integrating a �-function with the Altarelli-Parisi split-

ting function, as shown in Eq. (6), to give

dN
�!e

+
e

�
�

dE
�

' 2↵
EM

⇡E
�


1 � 2�

�

+
�
1 � 2�

�

+ 2�2

�

�
ln

✓
1 � 2�

�

⌫2

e

◆�
, (21)

where the spectrum is bounded by the energies 0 < E
�

< m
�

/2. We use the exact calculation

of the three-body final state for the spectra and the exclusion regions in Fig. 10. In this

figure, we show the dimensionless galactic photon spectrum

dN

dx
=

m
1

2

dN

dE
(22)
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Bounds:

2

masses in the MeV-GeV range, and lifetimes long enough
for the decay products to directly influence the physical
processes in the universe following BBN, and during the
epoch of CMB decoupling. These vectors have a para-
metrically small coupling to the electromagnetic current,
and thus an extremely small production cross sections for
e+e� ! V �,

�
prod

⇠ ⇡↵↵
e↵

E2

c.m.

⇠ 10�66 � 10�52 cm2, (4)

where we took E
c.m. ⇠ 200 MeV and the range is deter-

mined by our region of interest,

↵
e↵

⇠ 10�38 � 10�24. (5)

Such small couplings render these vector states com-
pletely undetectable in terrestrial particle physics exper-
iments, and consequently we refer to them as very dark

photons (VDP). As follows from the expression (2) for
the lifetime, the lower limit of the above range for ↵

e↵

is relevant for CMB physics, while the upper limit is im-
portant for BBN.

The production cross section (4) looks prohibitively
small, but in the early Universe at T ⇠ mV every parti-
cle in the primordial plasma has the right energy to emit
V ’s. The cumulative e↵ect of early Universe production
at these temperatures, followed by decays at t ⇠ ⌧V , can
still inject a detectable amount of electromagnetic energy.
A simple parametric estimate for the electromagnetic en-
ergy release per baryon, omitting O(1) factors, takes the
form

E
p.b. ⇠

mV �prod

H�1

T=mV

nb,T=mV

⇠ ↵
e↵

M
Pl

10 ⌘b
⇠ ↵

e↵

⇥ 1036 eV.

(6)
Here the production rate per unit volume, �

prod

, was
taken to be the product of the typical number density
of particles in the primordial plasma and the V decay
rate, ⌧�1

V n�,T=mV . This production rate is active within
one Hubble time, H�1

T=mV
, leading to the appearance of

the Planck mass in (6), along with another large fac-
tor, the ratio of photon to baryon number densities,
⌘�1

b = 1.6 ⇥ 109. One observes that the combination
of these two factors is capable of overcoming the extreme
suppression by ↵

e↵

. Given that BBN can be sensitive
to an energy release as low as O(MeV) per baryon, and
that the CMB anisotropy spectrum allows us to probe
sub-eV energy injection, we reach the conclusion that
the early Universe can be an e↵ective probe of VDP! The
cosmological signatures of the decaying VDP were par-
tially explored in [4, 5], but to our knowledge the CMB
constraints on this model were not previously studied.

In the remainder of this paper, we provide detailed cal-
culations to delineate the VDP parameter regions that
are constrained by BBN and CMB data. In the process,
we provide in Section 2 an improved calculation of the
‘freeze-in’ abundance in the Early Universe (using some
recent insight about the in-medium production of dark

vectors [6, 7]; see also [8]). In Section 3, we explore the
BBN constraints in more detail, including the speculative
possibility that the currently observed over-abundance of
7Li can be reduced via VDP decays. Then in Section 4
we consider the impact of even later decays on the CMB
anisotropies. A summary of the constraints we obtain in
shown in Fig. 1, and more detailed plots of the parame-
ter space are shown in Sections 3 and 4. We finish with
some concluding remarks in Section 5. Several Appen-
dices contain additional calculational details.
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FIG. 1. An overview of the constraints on the plane of vec-
tor mass versus kinetic mixing, showing the regions excluded
due to their impact on BBN and the CMB anisotropies, in
addition to various terrestrial limits [1, 9], including the more
recent limits [10]. These excluded regions are shown in more
detail in later sections.
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for  a  vector  DM  mixing  with  γ:  



✏ & v2/⇤2

Taking  gσ ~ 0.1g  &  f~Λ



●

●

●

●

Main message of the first explicit model:

Large field excursions (beyond Λ) needed 

Large number of e-foldings

Too low Λ, as too low Λc ~ ΛQCD ~ GeV

QCD-axion + Higgs affords almost a “relaxation” mechanism

Extra U(1)PQ terms needed  (origin?)

Main drawbacks:

 θ-problem strikes back

●



“Kicking” term via mixing with other axions:
K.Choi and S.H.Im 15
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FIG. 1: Flat direction in the fundamental domain of axion fields in the limit �2 = 0. Even

though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

�flat =
2⇡

p
n2

1f
2
2 + n2

2f
2
1

gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if

n1

gcd (n1, n2)
or

n2

gcd (n1, n2)
� MP l

fi
� 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as

fe↵ � �flat

2⇡
,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.

Turning on the second axion potential

�V = ⇤4
2

�
1 � cos

✓
m1�1

f1

+
m2�2

f2

◆�
, (14)

a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when �flat � MP l, natural inflation is not guaranteed as the inflaton potential induced

6

FIG. 1: Flat relaxion direction in the two axion model.

where fH = f1f2/fe↵ . In the limit ⇤4 � ✏f 4
2 � ⇤4

br, it is straightforward to integrate out

the heavy axion �H to derive the low energy e↵ective lagrangian of the light axion �. The

resulting e↵ective potential of the canonically normalized � is given by

Ve↵ = �✏f 4
2 cos

✓
�

fe↵

� �2

◆
+

✓
M2

h � ✏0f 2
2 cos

✓
�

fe↵

� �0
2

◆◆
|h|2

� ⇤4
br(h) cos

✓
�

f
+ �1

◆
, (25)

where

fe↵ =
q

n2f 2
1 + f 2

2 ⌘ nf. (26)

We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by

L =
1

2

X

i

(@µ�i)
2 �

⇣
Ṽ0 + V0 + µ2

h|h|2 + Vbr + ...
⌘

, (27)
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One axion ➔ Two axion model:
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, (14)

where

⇤4 � ✏f 4
2 � ⇤4

br. (15)

Here Mh is an axion-independent mass parameter which is comparable to the cuto↵ scale

of the above e↵ective lagrangian, and n > 1 is an integer which will be determined by the

underlying UV completion. We assume

✏f 2
2 & O(✏0M2

h), ✏0f 2
2 & O(M2

h), (16)

and therefore the model is stable against the radiative corrections which replace the Higgs

operator |h|2 with the cuto↵-square of O(M2
h), while allowing µ2

h = 0 for certain value of

�2.

As for the back reaction potential, one can consider two di↵erent possibilities. One

option is to generate it by the coupling of �1 to the QCD anomaly, yielding

⇤4
br(h) ⇠ yu⇤

3
QCDh, (17)

where yu denotes the up quark Yukawa coupling to the SM Higgs field h, and ⇤QCD

is the QCD scale. This option corresponds to the minimal model, however generically

is in conflict with the axion solution to the strong CP problem. Alternative option is

to introduce a new hidden gauge interaction which confines around the weak scale and

generates a back reaction potential given by [1, 15]

⇤4
br = m2

1|h|2 + m4
2 (18)
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FIG. 1: Flat direction in the fundamental domain of axion fields in the limit �2 = 0. Even

though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

�flat =
2⇡

p
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1f
2
2 + n2

2f
2
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gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if
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or

n2
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� MP l

fi
� 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as

fe↵ � �flat

2⇡
,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.

Turning on the second axion potential
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a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when �flat � MP l, natural inflation is not guaranteed as the inflaton potential induced
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We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by
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Here Mh is an axion-independent mass parameter which is comparable to the cuto↵ scale

of the above e↵ective lagrangian, and n > 1 is an integer which will be determined by the

underlying UV completion. We assume
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and therefore the model is stable against the radiative corrections which replace the Higgs

operator |h|2 with the cuto↵-square of O(M2
h), while allowing µ2

h = 0 for certain value of

�2.

As for the back reaction potential, one can consider two di↵erent possibilities. One

option is to generate it by the coupling of �1 to the QCD anomaly, yielding

⇤4
br(h) ⇠ yu⇤

3
QCDh, (17)

where yu denotes the up quark Yukawa coupling to the SM Higgs field h, and ⇤QCD

is the QCD scale. This option corresponds to the minimal model, however generically

is in conflict with the axion solution to the strong CP problem. Alternative option is

to introduce a new hidden gauge interaction which confines around the weak scale and

generates a back reaction potential given by [1, 15]
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2 (18)
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FIG. 1: Flat direction in the fundamental domain of axion fields in the limit �2 = 0. Even

though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

�flat =
2⇡

p
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1f
2
2 + n2

2f
2
1

gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if

n1

gcd (n1, n2)
or

n2

gcd (n1, n2)
� MP l

fi
� 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as

fe↵ � �flat

2⇡
,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.

Turning on the second axion potential
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, (14)

a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when �flat � MP l, natural inflation is not guaranteed as the inflaton potential induced
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We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by
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though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.
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super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.
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Here Mh is an axion-independent mass parameter which is comparable to the cuto↵ scale

of the above e↵ective lagrangian, and n > 1 is an integer which will be determined by the

underlying UV completion. We assume
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h), (16)

and therefore the model is stable against the radiative corrections which replace the Higgs

operator |h|2 with the cuto↵-square of O(M2
h), while allowing µ2

h = 0 for certain value of

�2.

As for the back reaction potential, one can consider two di↵erent possibilities. One

option is to generate it by the coupling of �1 to the QCD anomaly, yielding
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br(h) ⇠ yu⇤

3
QCDh, (17)

where yu denotes the up quark Yukawa coupling to the SM Higgs field h, and ⇤QCD

is the QCD scale. This option corresponds to the minimal model, however generically

is in conflict with the axion solution to the strong CP problem. Alternative option is

to introduce a new hidden gauge interaction which confines around the weak scale and

generates a back reaction potential given by [1, 15]
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2 (18)
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though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.
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Here Mh is an axion-independent mass parameter which is comparable to the cuto↵ scale

of the above e↵ective lagrangian, and n > 1 is an integer which will be determined by the

underlying UV completion. We assume
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and therefore the model is stable against the radiative corrections which replace the Higgs

operator |h|2 with the cuto↵-square of O(M2
h), while allowing µ2

h = 0 for certain value of
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As for the back reaction potential, one can consider two di↵erent possibilities. One

option is to generate it by the coupling of �1 to the QCD anomaly, yielding
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br(h) ⇠ yu⇤

3
QCDh, (17)

where yu denotes the up quark Yukawa coupling to the SM Higgs field h, and ⇤QCD

is the QCD scale. This option corresponds to the minimal model, however generically

is in conflict with the axion solution to the strong CP problem. Alternative option is

to introduce a new hidden gauge interaction which confines around the weak scale and
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generates a back reaction potential given by [1, 15]

⇤4
br = m2

1|h|2 + m4
2 (18)
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FIG. 1: Flat direction in the fundamental domain of axion fields in the limit �2 = 0. Even

though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

�flat =
2⇡

p
n2

1f
2
2 + n2

2f
2
1

gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if

n1

gcd (n1, n2)
or

n2

gcd (n1, n2)
� MP l

fi
� 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as

fe↵ � �flat

2⇡
,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.

Turning on the second axion potential

�V = ⇤4
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�
1 � cos

✓
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f1

+
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f2
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, (14)

a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when �flat � MP l, natural inflation is not guaranteed as the inflaton potential induced
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where fH = f1f2/fe↵ . In the limit ⇤4 � ✏f 4
2 � ⇤4

br, it is straightforward to integrate out

the heavy axion �H to derive the low energy e↵ective lagrangian of the light axion �. The

resulting e↵ective potential of the canonically normalized � is given by
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where

fe↵ =
q

n2f 2
1 + f 2

2 ⌘ nf. (26)

We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by

L =
1

2

X

i

(@µ�i)
2 �

⇣
Ṽ0 + V0 + µ2

h|h|2 + Vbr + ...
⌘

, (27)
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though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

�flat =
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where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if
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or
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In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as
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,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.
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where fH = f1f2/fe↵ . In the limit ⇤4 � ✏f 4
2 � ⇤4

br, it is straightforward to integrate out

the heavy axion �H to derive the low energy e↵ective lagrangian of the light axion �. The

resulting e↵ective potential of the canonically normalized � is given by
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where

fe↵ =
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n2f 2
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We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by

L =
1

2

X

i

(@µ�i)
2 �

⇣
Ṽ0 + V0 + µ2

h|h|2 + Vbr + ...
⌘

, (27)

8

12

�� =
1

2
�̇2 + M2g� =

g2M4

2H2
0 (3 + �0)2

�
1 +

3

�0
(1 � e2N �0)

�
+ M2g�0 (92)

(�0 & 2M2/g) (93)

⇠ HfMPl (94)

g = �4/M3 (f = M) (95)

M . ��1/10
0

�
�4MPl

�1/5

�
��

��

6 TeV, � = 1GeV

250 TeV, � = 100GeV
for �0 = 10�2 (96)

N & 50 log

✓
M6

�6

◆
⇡ 3 ⇥ 103 (97)

H0 = � (98)

�1 � �2 �3 (99)

2⇡f2/n2 (100)

12

�� =
1

2
�̇2 + M2g� =

g2M4

2H2
0 (3 + �0)2

�
1 +

3

�0
(1 � e2N �0)

�
+ M2g�0 (92)

(�0 & 2M2/g) (93)

⇠ HfMPl (94)

g = �4/M3 (f = M) (95)

M . ��1/10
0

�
�4MPl

�1/5

�
��

��

6 TeV, � = 1GeV

250 TeV, � = 100GeV
for �0 = 10�2 (96)

N & 50 log

✓
M6

�6

◆
⇡ 3 ⇥ 103 (97)

H0 = � (98)

�1 � �2 �3 (99)

2⇡f2/n2 (100)

13

2⇡
f 3

/n
2
n

3
(1

01
)

2⇡
f 1

(1
02

)

2⇡
f 2

(1
03

)

2⇡
f 3

(1
04

)

··
·

13

2⇡f3/n2n3 (101)

2⇡f1 (102)

2⇡f2 (103)

2⇡f3 (104)

· · ·

13

2⇡f3/n2n3 (101)

2⇡f1 (102)

2⇡f2 (103)

2⇡f3 (104)

· · ·

13

2⇡f3/n2n3 (101)

2⇡f1 (102)

2⇡f2 (103)

2⇡f3 (104)

· · ·

n (105)

2⇡f2/n (106)

�1

�2

· · ·

FIG. 1: Flat direction in the fundamental domain of axion fields in the limit �2 = 0. Even

though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by
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, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if
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� 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as

fe↵ � �flat
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,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.
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where fH = f1f2/fe↵ . In the limit ⇤4 � ✏f 4
2 � ⇤4

br, it is straightforward to integrate out

the heavy axion �H to derive the low energy e↵ective lagrangian of the light axion �. The

resulting e↵ective potential of the canonically normalized � is given by
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We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by

L =
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though the fundamental domain is sub-Planckian with fi ⌧ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this
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where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with �flat � MP l � fi can be developed on the two-

dimensional sub-Planckian domain if
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In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its e↵ective decay constant is bounded as
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,

which means that at least one of ni should be as large as gcd (n1, n2)fe↵/fi.
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where fH = f1f2/fe↵ . In the limit ⇤4 � ✏f 4
2 � ⇤4

br, it is straightforward to integrate out

the heavy axion �H to derive the low energy e↵ective lagrangian of the light axion �. The

resulting e↵ective potential of the canonically normalized � is given by
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where

fe↵ =
q

n2f 2
1 + f 2

2 ⌘ nf. (26)

We can now generalize the above two axion model to the case of N > 2 axions to

enlarge the e↵ective axion scale further [11]. The lagrangian density is given by

L =
1

2

X

i

(@µ�i)
2 �

⇣
Ṽ0 + V0 + µ2

h|h|2 + Vbr + ...
⌘

, (27)
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mixing term:

with a scalar potential

Ṽ0 = �⇤4 cos

✓
�1

f1

+ n
�2

f2

◆
,

V0 = �✏f 4
2 cos

✓
�2

f2

+ �2

◆
,

µ2
h = M2

h � ✏0f 2
2 cos

✓
�2

f2

+ �0
2

◆
,

Vbr = �⇤4
br(h) cos

✓
�1

f1

+ �1

◆
, (14)

where

⇤4 � ✏f 4
2 � ⇤4

br. (15)

Here Mh is an axion-independent mass parameter which is comparable to the cuto↵ scale

of the above e↵ective lagrangian, and n > 1 is an integer which will be determined by the

underlying UV completion. We assume

✏f 2
2 & O(✏0M2

h), ✏0f 2
2 & O(M2

h), (16)

and therefore the model is stable against the radiative corrections which replace the Higgs

operator |h|2 with the cuto↵-square of O(M2
h), while allowing µ2

h = 0 for certain value of

�2.

As for the back reaction potential, one can consider two di↵erent possibilities. One

option is to generate it by the coupling of �1 to the QCD anomaly, yielding

⇤4
br(h) ⇠ yu⇤

3
QCDh, (17)

where yu denotes the up quark Yukawa coupling to the SM Higgs field h, and ⇤QCD

is the QCD scale. This option corresponds to the minimal model, however generically

is in conflict with the axion solution to the strong CP problem. Alternative option is

to introduce a new hidden gauge interaction which confines around the weak scale and

generates a back reaction potential given by [1, 15]

⇤4
br = m2

1|h|2 + m4
2 (18)
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Supersymmetric UV completion (at Λ)

Fits nicely:

MSSM   +  

2 The framework

Our theoretical setup is simple and minimal. We consider an e↵ective theory valid below

the PQ symmetry breaking scale f , in which the only degrees of freedom are the usual

fields of the supersymmetric extension of the SM together with a new chiral superfield S.

The superfield S describes the relaxion (a), its scalar counterpart (the srelaxion s), and its

supersymmetric partner (the relaxino ã),

S =
s+ i ap

2
+
p
2 ✓ ã+ ✓2 F + derivative terms. (1)

For convenience, we choose S to be dimensionless. The transformations under PQ symme-

try of S and of the quark, lepton and Higgs chiral superfields (collectively denoted as �i)

are

S ! S + i↵ (2)

�i ! eiqi↵ �i, (3)

where qi are the PQ charges and ↵ is the global transformation parameter. From eq. (2) we

see that, under PQ transformations, the relaxion changes by a shift (a ! a+
p
2↵), while

s and ã remain invariant. We assign the PQ charges such that the Yukawa interactions are

invariant, but we allow for the possibility that the gauge-invariant Higgs bilinear carries a

PQ charge

HuHd ! eiq↵HuHd , q ⌘ qHu + qHd
. (4)

The case q = 0 belongs to the class of KSVZ [11] axion models, in which the PQ sector

is made of heavy matter, while the case q 6= 0 describes DFSZ [12] models, in which the

ordinary Higgs fields are charged under PQ.

The most general Lagrangian, up to dimension-4 interactions invariant under super-

symmetry and PQ, is given by2

L =

Z
d4✓

h
f 2K(S + S†) + Zi(S + S†)�†

ie
V�i

i
+

Z
d4✓U(S + S†) e�qSHuHd

+

Z
d2✓

⇣
Ca(S) TrWaWa + µ0 e

�qSHuHd +Yukawa int.
⌘
+ h.c.

�
, (5)

Ca(S) =
1

2g2a
� i⇥a

16⇡2
� ca S

16⇡2
. (6)

Here the index a runs over the 3 factors of the SM gauge group and K, Zi, U are generic

functions of the combination S + S† (which contains a only through derivative terms).3

2For the e↵ective theory of the supersymmetric axion, see [13] and references therein.
3The factor e�qS in eq. (5) can be eliminated by a superfield redefinition, as discussed in appendix A.
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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation � will slow-roll, scanning the physical Higgs

a
|FS |2



The good:  Change of paradigm: 
                   ● No big colliders needed!                   
                    ● The new-physics are weakly-coupled
                      light states 
                  

The bad & ugly:  it cannot (yet) fully solve the hierarchy problem,
            Ne>1038, super-Plankian field excursions, 

               explanation of the smallness of g

Conclusions

Other type of experiments needed: 
   ● Astro (γ-rays, pulsar timing, …), CMB, 
      table-top (fifth-force searches, EPV),  …

“Relaxation” mechanism can give a natural explanation for

  ⟨h⟩~100 GeV ≪ Λ~109 GeV

based on a cosmological history of the 
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UV origin of the periodic term beyond QCD:

Strong sector

where G0 denotes the SU(N) field strength. Analogously to the QCD axion, the field �

acquires a periodic e↵ective potential as a consequence of the chiral anomaly. The best way

to estimate the size of this contribution is to perform a chiral rotation for N such that one

eliminates the term (38) but generates mNNN ! mNei�/fNN , where mN is the e↵ective

mass of N :

mN ' ✏

✓
⇤+ g�� + g�� |H|2

⇤

◆
, (39)

with the last term arising from the middle diagram of Fig. 4. Using hNNi ⇠ ⇤3, the term

mNei�/fNN + h.c. gives, at O(✏),

V ' ⇤3mN cos(�/f) . (40)

Equation (40), together with Eq. (39), reproduces the periodic term of Eq. (4).

Using this explicit UV model we can also analyze possible additional contributions to the

� potential. For example, at O(✏2) we expect contributions to the � potential coming from

terms (NN)2 generated at the quantum level from diagrams as the one shown in Fig. 4. After

the chiral rotation described above, that eliminates Eq. (38), we have (NN)2 ! (NNei�/f )2,

which leads to a term for the � potential ⇠ ✏2⇤4 cos2(�/f). As we discussed in the main

text, in order for the relaxation mechanism to work we need to suppress these terms with

respect to the leading potential in Eq. (4). This leads to the condition in Eq. (14).

B Relaxation in a two Higgs doublet scenario

In this appendix we present a relaxation model based on a two Higgs doublet model (2HDM).

The motivation for this is, as mentioned in the introduction, to generate the term h cos(�/f)

that requires a second source of EWSB. If the second Higgs is also elementary, we must find

a way to keep its mass also small. Otherwise, we expect that, at the end of the relaxation

process, only one Higgs being light, while the second doublet having generically a mass of

the order ⇤.

To solve this problem we can advocate an additional global SU(2)R invariance at the

scale ⇤ under which the two Higgses transform as a doublet, (H1, H2), ensuring that both

have the same masses and quartic couplings. This symmetry guarantees that the masses of

the two Higgses are canceled simultaneously by the � field. The SU(2)R symmetry can be

easily extended to the third quark generation sector by considering a type-II 2HDM in which

the bR and tR components form an SU(2)R-doublet, and the Yukawa term is given by

y Q̄L(H1 H2) (bR tR)
T + h.c. . (41)
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text, in order for the relaxation mechanism to work we need to suppress these terms with

respect to the leading potential in Eq. (4). This leads to the condition in Eq. (14).
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In this appendix we present a relaxation model based on a two Higgs doublet model (2HDM).

The motivation for this is, as mentioned in the introduction, to generate the term h cos(�/f)

that requires a second source of EWSB. If the second Higgs is also elementary, we must find

a way to keep its mass also small. Otherwise, we expect that, at the end of the relaxation

process, only one Higgs being light, while the second doublet having generically a mass of

the order ⇤.

To solve this problem we can advocate an additional global SU(2)R invariance at the

scale ⇤ under which the two Higgses transform as a doublet, (H1, H2), ensuring that both

have the same masses and quartic couplings. This symmetry guarantees that the masses of

the two Higgses are canceled simultaneously by the � field. The SU(2)R symmetry can be

easily extended to the third quark generation sector by considering a type-II 2HDM in which

the bR and tR components form an SU(2)R-doublet, and the Yukawa term is given by

y Q̄L(H1 H2) (bR tR)
T + h.c. . (41)
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Assuming mass of N given by:

a la QCD +  
with a light fermion: N
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Figure 4: Left: Diagram generating �NN at the radiative level. Middle: Diagram con-

tributing to the coupling NN |H|2. Right: Diagram generating an O(✏2) contribution to

(NN)2.

Under the SU(2)L⇥U(1)Y SM group, L has the quantum numbers of a lepton doublet, while

N is a singlet. We assume that the SU(N) gauge sector becomes strongly-coupled at the

scale ⇤. A key ingredient of the model is the presence of a specific set of mass and interaction

terms for the fermions that break the accidental global symmetries. We assume that the L

and N fields have Dirac masses (here and in the following we neglect O(1) parameters):

Lmass = ⇤LL+ ✏⇤NN , (35)

and couplings to the SM Higgs given by

LY uk =
p
✏LHN + h.c. . (36)

Finally, interaction terms of the singlet N to the � and � fields are included with couplings

of order ✏g and ✏g� respectively

LN = ✏g�NN + ✏g��NN . (37)

As can be seen from the Lagrangian above, we have associated to each N field a coupling
p
✏ ⌧ 1. In the limit ✏ ! 0 the theory acquires an additional chiral invariance (broken only

by the axial anomaly). It is interesting to notice that even if we do not introduce in the

Lagrangian the coupling of the � field to N , it is nevertheless generated at the radiative level

due to the presence of the g⇤�|H|2 coupling in the e↵ective Lagrangian, as shown by the

left diagram of Fig. 4.

We also assume that the � field interactions are invariant under a shift-symmetry, � !
�+ c, up to the explicit breakings due to g, and an anomalous interaction term

�

f
G0

µ⌫
eG0µ⌫ , (38)
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and couplings to the SM Higgs given by
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As can be seen from the Lagrangian above, we have associated to each N field a coupling
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✏ ⌧ 1. In the limit ✏ ! 0 the theory acquires an additional chiral invariance (broken only

by the axial anomaly). It is interesting to notice that even if we do not introduce in the

Lagrangian the coupling of the � field to N , it is nevertheless generated at the radiative level

due to the presence of the g⇤�|H|2 coupling in the e↵ective Lagrangian, as shown by the

left diagram of Fig. 4.

We also assume that the � field interactions are invariant under a shift-symmetry, � !
�+ c, up to the explicit breakings due to g, and an anomalous interaction term

�

f
G0
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eG0µ⌫ , (38)
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terms for the fermions that break the accidental global symmetries. We assume that the L

and N fields have Dirac masses (here and in the following we neglect O(1) parameters):

Lmass = ⇤LL+ ✏⇤NN , (35)

and couplings to the SM Higgs given by
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As can be seen from the Lagrangian above, we have associated to each N field a coupling
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✏ ⌧ 1. In the limit ✏ ! 0 the theory acquires an additional chiral invariance (broken only

by the axial anomaly). It is interesting to notice that even if we do not introduce in the

Lagrangian the coupling of the � field to N , it is nevertheless generated at the radiative level

due to the presence of the g⇤�|H|2 coupling in the e↵ective Lagrangian, as shown by the

left diagram of Fig. 4.

We also assume that the � field interactions are invariant under a shift-symmetry, � !
�+ c, up to the explicit breakings due to g, and an anomalous interaction term
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scale ⇤. A key ingredient of the model is the presence of a specific set of mass and interaction

terms for the fermions that break the accidental global symmetries. We assume that the L

and N fields have Dirac masses (here and in the following we neglect O(1) parameters):

Lmass = ⇤LL+ ✏⇤NN , (35)

and couplings to the SM Higgs given by

LY uk =
p
✏LHN + h.c. . (36)

Finally, interaction terms of the singlet N to the � and � fields are included with couplings

of order ✏g and ✏g� respectively

LN = ✏g�NN + ✏g��NN . (37)

As can be seen from the Lagrangian above, we have associated to each N field a coupling
p
✏ ⌧ 1. In the limit ✏ ! 0 the theory acquires an additional chiral invariance (broken only

by the axial anomaly). It is interesting to notice that even if we do not introduce in the

Lagrangian the coupling of the � field to N , it is nevertheless generated at the radiative level

due to the presence of the g⇤�|H|2 coupling in the e↵ective Lagrangian, as shown by the

left diagram of Fig. 4.

We also assume that the � field interactions are invariant under a shift-symmetry, � !
�+ c, up to the explicit breakings due to g, and an anomalous interaction term

�

f
G0

µ⌫
eG0µ⌫ , (38)
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Dangerous terms from

where G0 denotes the SU(N) field strength. Analogously to the QCD axion, the field �

acquires a periodic e↵ective potential as a consequence of the chiral anomaly. The best way

to estimate the size of this contribution is to perform a chiral rotation for N such that one

eliminates the term (38) but generates mNNN ! mNei�/fNN , where mN is the e↵ective

mass of N :

mN ' ✏

✓
⇤+ g�� + g�� |H|2

⇤

◆
, (39)

with the last term arising from the middle diagram of Fig. 4. Using hNNi ⇠ ⇤3, the term

mNei�/fNN + h.c. gives, at O(✏),

V ' ⇤3mN cos(�/f) . (40)

Equation (40), together with Eq. (39), reproduces the periodic term of Eq. (4).

Using this explicit UV model we can also analyze possible additional contributions to the

� potential. For example, at O(✏2) we expect contributions to the � potential coming from

terms (NN)2 generated at the quantum level from diagrams as the one shown in Fig. 4. After

the chiral rotation described above, that eliminates Eq. (38), we have (NN)2 ! (NNei�/f )2,

which leads to a term for the � potential ⇠ ✏2⇤4 cos2(�/f). As we discussed in the main

text, in order for the relaxation mechanism to work we need to suppress these terms with

respect to the leading potential in Eq. (4). This leads to the condition in Eq. (14).

B Relaxation in a two Higgs doublet scenario

In this appendix we present a relaxation model based on a two Higgs doublet model (2HDM).

The motivation for this is, as mentioned in the introduction, to generate the term h cos(�/f)

that requires a second source of EWSB. If the second Higgs is also elementary, we must find

a way to keep its mass also small. Otherwise, we expect that, at the end of the relaxation

process, only one Higgs being light, while the second doublet having generically a mass of

the order ⇤.

To solve this problem we can advocate an additional global SU(2)R invariance at the

scale ⇤ under which the two Higgses transform as a doublet, (H1, H2), ensuring that both

have the same masses and quartic couplings. This symmetry guarantees that the masses of

the two Higgses are canceled simultaneously by the � field. The SU(2)R symmetry can be

easily extended to the third quark generation sector by considering a type-II 2HDM in which

the bR and tR components form an SU(2)R-doublet, and the Yukawa term is given by

y Q̄L(H1 H2) (bR tR)
T + h.c. . (41)

22

where G0 denotes the SU(N) field strength. Analogously to the QCD axion, the field �

acquires a periodic e↵ective potential as a consequence of the chiral anomaly. The best way

to estimate the size of this contribution is to perform a chiral rotation for N such that one

eliminates the term (38) but generates mNNN ! mNei�/fNN , where mN is the e↵ective

mass of N :

mN ' ✏

✓
⇤+ g�� + g�� |H|2

⇤

◆
, (39)

with the last term arising from the middle diagram of Fig. 4. Using hNNi ⇠ ⇤3, the term

mNei�/fNN + h.c. gives, at O(✏),

V ' ⇤3mN cos(�/f) . (40)

Equation (40), together with Eq. (39), reproduces the periodic term of Eq. (4).

Using this explicit UV model we can also analyze possible additional contributions to the

� potential. For example, at O(✏2) we expect contributions to the � potential coming from

terms (NN)2 generated at the quantum level from diagrams as the one shown in Fig. 4. After

the chiral rotation described above, that eliminates Eq. (38), we have (NN)2 ! (NNei�/f )2,

which leads to a term for the � potential ⇠ ✏2⇤4 cos2(�/f). As we discussed in the main

text, in order for the relaxation mechanism to work we need to suppress these terms with

respect to the leading potential in Eq. (4). This leads to the condition in Eq. (14).

B Relaxation in a two Higgs doublet scenario

In this appendix we present a relaxation model based on a two Higgs doublet model (2HDM).

The motivation for this is, as mentioned in the introduction, to generate the term h cos(�/f)
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scale ⇤ under which the two Higgses transform as a doublet, (H1, H2), ensuring that both
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Benchmark values:   Λ~109 GeV   ☛ m𝝓 ~ 100 GeV 

                                                                                 θ𝝓h ~ 10-21

                                                                                                         𝝓𝝓hh-coupling ~ 10-14                                   
                                                                                          mσ ~ 10-18 GeV     

                                                                                 θσh ~ 10-50
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