Development of Nb₃Sn in Japan

T. Ogitsu, T. Nakamoto, M. Sugano KEK, S. Awaji Tohoku Univ., H. Oguro Tokai Univ., A. Vallarino, M. Benedict CERN, K. Miyashita, Y. Suzuki SH Copper Products., K. Saito, S. Kawashima, Y. Fukumoto Kobe Steel and JASTEC H. Sakamoto, T. Fukushima, H. Shimizu Furukawa Electric

Scope:

CERN, KEK and Tohoku university have jointly launched a R&D program

- The scope of the program is to develop, produce in representative lengths and characterize Nb₃Sn wire with enhanced characteristics.
- The final goal is to achieve in representative unit lengths of material the development targets defined, on the basis of magnets performance, for the FCC Nb₃Sn conductor:

Final Target Properties

- A non-copper critical current density at 4.2 K and 16 T (Jc(4.2 K, 16 T)) of at least 1500 A/mm²;
- A wire diameter of not more than 1 mm;
- A fraction of stabilizer to superconductor in the wire of at least 1;
- An equivalent diameter of the superconducting Nb₃Sn filaments of less than 50 μ m;
- A low electrical resistivity of the copper stabilizer of the wire, i.e. a Residual Resistivity Ratio (RRR) of the copper after wire reaction of above 150.

R&D Plan

17:00 [9] JASTEC/Kobelco

Development of high performance and low cost Nb3Sn wires at SH Copper Products

Internal Tin Nb₃Sn wire in SH Copper SH Copper Products

FCC Week 2016 For high field magnet application, since 2009, we started to develop new type internal tin wire Ta / Nb barrier Sn-2%Ti filament

Sn Filament size is almost equal to Nb filament size. Simple structure ⇒Low Cost Corresponding to more than Cu-35wt%Sn bronze

Manufacturing (L=14km class wire @ 1mm dia.) SH Copper Products

FCC Week 2016

Four manufacturing size billets are successfully extruded and drawn.

Billet ID No.	HE5000 (2010)	HE5143 (2011)	HE5542 (2012)	HE6585 (2014)
Number of Nb filament	840	564	564	277
Number of Sn filament	421	283	295	120
Total number	1261	847	859	397
Filament dia. @φ1mm	15 μm	20 µm	20 µm	30 µm
Cu ratio	0.51	0.51	0.51	0.51
Mole ratio (<mark>Nb</mark> /Sn)	2.53	2.72	2.40	2.89

Rectangular Wire

FCC Week 2016

Good barrier shape (no deformation) High RRR ; ≧250

It is possible to work rectangular shape without Ic & RRR degradation. *Barrier (Ta/Nb)*

,Sn-2%Ti₄Nb-1%Ta

ID No. HE5143, 1.14X1.72mm Ic=504A at 18T (Non-Cu Jc =403A/mm²), RRR=254

FCC Week 2016

ltem	FCC final target	Status
Non Cu Jc at 16T (A/mm ²)	>1500	685
μ₀Δ Μ @ 1Τ, 4.2K (mT)	<150	233
Deff	<20	28~30
RRR*1	>150	>250
Unit Length (km)	>5	>20 (ø0.8mm)

*1 : After wire deformation, RRR is NOT degraded.

Next stage (in 2016 \sim 2018)

SH Copper Products

FCC Week 2016

(1) High Jc (Non Cu > 1500A/mm² @16T)
(a) Optimization of ratio of Nb, Sn & Cu inside barrier Mole ratio; Nb : Sn : Cu = 2.5~2.9 : 1 : 2.5~3.5 in the past

= 3.0~3.5 : 1 : 1.8~2.3 in the future

(Nb/Sn > 3.0 & Cu-45 \sim 58wt%Sn bronze)

- (b) Nb-X filament (X; 1~4wt% Ti or Ta)
- (c) New cross section (For high Jc & low magnetization)
- (d) Geometrical filament diameter ; < 20 μ m
- (e) Optimization of heat treatment
- (2) Low magnetization
 - (a) Prevent of completely proximity effect between each Nb3Sn filament.
- (3) Stability
 - (a) Prevent of completely proximity effect Jc

Development Status and plan at Kobe Steel/JASTEC

FCC Week 2016 High Jc Nb3Sn conductor development in Japan 2016/4/11

Kobe Steel and JASTEC

Research and Development

Production and Sales

JASTEC/KSL Nb₃Sn Wire

- JASTEC is a world primary wire manufacturers, especially for Nb3Sn.
 - For NMR magnet : ~10 tons every year
 - For ITER: 100 tons in total
- JASTEC supplied TF & CS (Nb3Sn) wires for ITER.
 - 40 tons for TF conductor (~1/10 of total)
 - 60 tons for CS conductor (1/3 of total)
- > R&D division in KSL works for JASTEC.

Strand (TF)

Cable (CS)

High-Jc Bronze wire/cable for ITER project

Distributed Tin (DT) wire with even higher Jc performance (under development)

Distributed Tin Nb₃Sn Wire (DT wil SJASTEC KOBE STEEL GROUP

Development target :

High Ic wire at high magnetic field (>18T) for NMR magnet

FCC \Rightarrow High Jc at 16T

Cu/Nb Multi fimament

Sn in Cu tube

Performance of current DT-wire **SJASTEC** KOE

Critical Current

Magnetization

Non-Copper Jc : 650A/mm² at 16T

DT-wire has larger value comparing to Bronze wire \Rightarrow some filaments are

bridged.

Future develop plan

Step 1 for Jc enhancement

Intrinsic Jc (Nb₃Sn layer Jc) depends on the Nb₃Sn grain size, chemical composition and the Jc enhancing impurity (Ti, Ta). Controlling those factors could be applied for the development.

Also, artificial pinning technique are being considered

Non-Copper Jc : 540A/mm² at 16T

Refinement of grain size via adjustment of heat treatment condition

Trade-off relation between Jc and filament spacing

Development at Furukawa

March 31, 2016 Furukawa Electric Co., Ltd.

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2016

Increasing J_C of Bronze Method Nb₃Sn ELECTRIC

Items	2008 design	2012 design
Strand final diameter (mm)	0.83±0.005	0.83±0.005
Cu/Non-Cu ratio	1.0 ±0.1	1.0 ±0.1
Diffusion Barrier	Та	Та
Bronze composition (wt%)	16Sn-0.3Ti	15.7Sn-0.3Ti
Filament dia. (µm)	3.3 (nominal)	2.3 (nominal)

Cu-Nb reinforced Nb₃Sn wire

FURUKAWA ELECTRIC

Nb-rod method plays important role of R&W type Nb₃Sn wire

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2016

Applying to Superconducting Magnet

25T CSM at Tohoku University

Requirements of Nb₃Sn Rutherford cables for the 25T-CSM

- ➤ React-and-wind process
- ➢Applying Cu-Nb internal-reinforced Nb₃Sn strand with Ta barrier
- ➤Conductor critical current > 1,900 A @ 4.2 K, 12 T, 300 MPa
- Irreversible tensile stress > 350 MPa @ 4.2 K, 14.5 T
- Ic degradation rate at transverse compressive stress 60 MPa <5%</p>
- Ic improvement by pre-bending treatments
- Excellent mass productivity for total length 7.8 km manufacturing

[7] K. watanaoe et al., 1222 Trans. Appl. Supercond., vol. 25 (2015) +500504, [9] S.Awaji et al.: IEEE Trans. Appl. Supercond. Vol.24 (2014) 4302005, [10] M.Sugimoto et al., IEEE Trans. Appl. Super. – ASC 2014 Special Issue, accepted for publication.

(a) Strand				
Superconductor	Bronze- processed Nb ₃ Sn			
Reinforcement	Nb-rod-method Cu-20vol%Nb			
Diameter	0.8mm			
Cu/CuNb/non-Cu	20%/35%/45%			
Filament diameter	3.3µm			
Twist pitch (Direction)	24mm (S)			
(b) Rutherford cable				
Number of strands	16			
Heat treatment	670°C×96hr			
Dimensions (After prevending)	6.5mm ^w x1.55 mm ^t			
Cabling pitch (Direction)	65 mm (Z)			

FURUKAWA

ELECTRIC

Cu-Nb/Nb₃Sn Rutherford cable

I_c properties under stress

FURUKAWA ELECTRIC

Ic enhancement range by pre-bending:

tensile≦ 250MPa, transverse≦100MPa

- Optimum per-bending to be suitable for stress condition in operating magnet
- Pre-bending is useful for superconductor used under stressed winding.

[10] M.Sugimoto et al., IEEE Trans. Appl. Super. – ASC 2014 Special Issue, accepted for publication.

- ✓ Furukawa has launched research study to come up with breakthrough idea for FCC target;
- ➤ Jc ≥1,500A/mm² at 4.2K, 16T
- > Wire diameter ≤1mm
- ≻ Cu to non-Cu ≥1
- $> Nb_3Sn$ filament diameter <50 μ m
- ≻ RRR >150
- ✓ by modified Nb tube and/or modified internal tin (DT-like)
- \checkmark under collaboration with CERN and KEK
- ✓ by Feb. 2020

Test items

Electro-magnetic performance

- Ic measurement at 4.2 K and B < 18 T</p>
- RRR measurement (after rolling and HT)
- B-H measurement (VSM) \rightarrow Magnetic stability

Microscopic observation

- Electron Backscatter Diffraction Analysis (EBSD) \rightarrow Grain size
- Energy Dispersive Electron Spectroscopy (EDS) → Composition analysis
- SEM, TEM, ...

Electro-mechanical performance

- Ic vs axial-tensile strain, compressive stress

Neutron diffraction at J-PARC

- Strain measurement at cryogenic temperature
- Observation of phase evolution during heat treatment

Ic measurements: mainly by KEK at Tohoku University More detailed analysis: by Tokai University (Dr. Oguro's group)

Ic measurement

Required specifications

- Magnetic field: > 16 T
- Temperature: 4.2 K
- Current capacity

non-Cu Jc = 1500 A/mm² Wire diameter = 0.8 mm Cu/non-Cu ratio = 1

Ic ~ 380 A

Assignment of measurements

18 T solenoid magnet in Tohoku University

A series of Ic measurements will be performed in Japan, and conductors with high Jc will be sent to CERN.

Ic measurements at B<12 T: Possible in all three conductor suppliers

Ic measurements at B>12 T: by KEK with Tohoku and Tokai University + each supplier

Standardization of measurement procedure

- Spiral sample for precise Ic determination
- Mandrel: ITER barrel
- Handling of samples

ITER barrel Ghosh, IEEE TAS (2011)

Electro-mechanical tests

Various inserts for electro-mechanical tests for wires have been developed in Tohoku University.

Axial tensile strain

Field < 18 T Temperature : 4.2 K Load < 5 kN

Axial tensile/compressive strain

Field < 18 T Temperature : 4.2 K Load < 1 kN

Neutron diffraction technique at J-PARC

Engineering Materials Diffractometer (TAKUMI), J-PARC

Cryogenic tensile testing system

Residual strain of Nb3Sn in composite conductors at cold can be evaluated. Jc-strain performance for conductors with different cross-sections can be discussed.

Neutron diffraction technique will be also useful for observing phase evolution during heat treatment of Nb3Sn wires.

Summary

- Joint R&D program: CERN, KEK and Tohoku university
 - 4 year program
- 3 Manufacturer will corporate
 - SH-Copper: DT (single stack)
 - JASTEC/KobeSteel:DT (Nb sub bundle)
 - Furukawa: Nb Tube (or DT)
- Characterization
 - KEK, Tohoku Univ., and Tokai Univ.