Beam-beam and electron cloud effects in FCC-ee

K. Ohmi (KEK)

FCC week 2016, 11-15 Apr, 2016

Thanks to W. Chou, K. Oide, D. Shatilov, Y. Zhang, D. Zhou, F. Zimmermann

Introduction

- Beam-beam simulations
 - Strong-strong simulations for luminosity prediction
 - Coherent instability
 - Collective emittance growth

- Study of electron cloud effects
 - FCC-ee TLEP-Z,W,H,t
- Study of ion instability
 - FCC-ee TLEP-Z

Parameters for FCC-ee's; CEPC and TLEP

		CEPC	TLEP-Z	TLEP-W	TLEP-H	TLEP-t
Circumf	C (km)	54	100	100	100	100
Energy	E (GeV)	120	45.5	80	120	175
No. bunches	N _b	49	90300	5162	770	78
Bunch pop	N _e (10 ¹¹)	3.8	0.33	0.6	0.8	1.7
emittance	$\varepsilon_{\rm x}({\rm nm})/\varepsilon_{\rm y}({\rm pm})$	6.1/18	0.09/1	0.27/1	0.61/1.2	1.3/2.5
Beta at IP	$\beta_x(m)/\beta_y$ (mm)	0.8/1.2-3	1/2	1/2	1/2	1/2
Synchro. tune	ν_{s}	0.18	0.015	0.037	0.056	0.075
Bunch length	$\sigma_{z,SR}/\sigma_{z,tot}(mm)$	2.3/2.6	2.7/5.0	2.0/3.0	2.0/2.4	2.1/2.5
Energy spread	$\sigma_{\delta,SR}/\sigma_{\delta,tot}$ (10 ⁻⁴)	13/15	3.7/6.8	6.5/10	10/12	14/17
Crossing angle	φ_c (half angle)	-	15	15	15	15
Piwinski angle	$\phi_c \sigma_{z,tot} / \sigma_x$	-	7.9	2.7	1.5	1.0
Damping time	τ_z/T_0	40	1520		71	25
Luminosity	L (10 ³⁴ cm ⁻² s ⁻¹)	2	62		5.2	1.4

Luminosity is calculated by ws code BBWS.

Simulation of beam-beam collision

- Luminosity evaluation using simplified lattice, in which arc transformation is represented by 6x6 transfer matrix. Effect of lattice is discussed later.
- Weak-strong (WS) simulation
 - One (strong) beam is fixed charge distribution (Gaussian).
 - The other (weak) beam is represented by macro-particles.
- Strong-strong (SS) simulation
 - Two beams are represented by macro-particles.
 - Equilibrium charge distribution of two beams are determined self-consistently.
 - Coherent instability can be treated.
 - Noise due to statistics for macro-particle number. The statistical noise should be smaller than radiation excitation.

$$N_{mp} \gg 2T_0/\tau_{x,y}$$

Strong-strong simulation using BBSS code

- Arbitrary beam distribution is treated using Particle In Cell Poisson solver.
- Available for very flat beam, using integrated Green function.
- Longitudinal slice and potential interpolation
- Beamstrahlung
- Shifted Green function for collision with large separation, collision between head of one beam and tail of the other beam.
- 50x50x4(TLEP-Z) collision solving Poisson equation per beam-beam crossing.
- Other choice for collision simulation: Gaussian approximation, combination of PIC and Gaussian collision

Shifted Green function Beam distribution and potential

TLEP-t (strong-strong sim.)

• Evolution of Lum and beam sizes, σ_v , σ_z .

No oscillation in <xz>. Dynamic
 <xz> due to BB is seen.

TLEP-H (strong-strong simulation)

- Evolution of Lum and beam sizes, σ_v , σ_z .
- Fluctuations in Lum. and beam sizes are seen.
- Fluctuation of <xz> is the origin.

Coherent motion in $\langle xz \rangle$ at tune $(v_x, v_y) = (0.54, 0.61)$

• <xz> oscillate in-phase ($\sigma(xz)$ mode) for e^- and e^+ beam.

- Luminosity degradation is not very strong in H, but the motion is bad sign.
- Gaussian strong-strong gave similar results.

Coherent motion in $\langle x \rangle$ at tune $(v_x, v_y) = (0.51, 0.57)$

• <x> oscillate out-phase ($\pi(x)$ model) for e^- and e^+ beam.

- Luminosity degradation is not very strong in H, but the motion is bad sign.
- Both of $\pi(x)$ and $\sigma(xz)$ modes are seen in (0.52,0.59).
- Gaussian strong-strong gave similar results.

Trials with several tune operating points

- The coherent motion is not recovered by choice of tune.
- The motion has not seen in KEKB nor SuperKEKB simulations. ξ ~0.1 for finite crossing angle.
- Separation of v_x (0.53-0.54) did not work.
- $\xi \sim 0.15$ of TLEP may be too high.

TLEP-Z (strong-strong sim.)

- High Piwinski angle $\phi_c \sigma_{z,tot} / \sigma_x = 7.9$
- Shifted Green function is used for potential calculation for collision between separated slices
- The coherent motion is seen for TLEP-Z. Lum. is degraded by the motion

Simulation using shifted Green function and combination of ordinary Green function and complex error function ($\Delta x > 5\sigma_x$)

• Coherent motion in $\langle xz \rangle / \sigma_z \sim \sigma_x$ is seen.

Summary for beam-beam studies using strong-strong simulation

- Coherent motion (instability) is seen H and Z, probably in W.
- Collision with crossing angle and high beam-beam parameter may induce the coherent motion.
- The coherent motion is bad sign.
- The coherent motion is not seen in simulations of KEKB and SuperKEKB.

Electron cloud effects in FCC-ee

Photons are emitted by positron/electron beam.

Number of photon per revolution $N_{\gamma} = \frac{5\pi}{\sqrt{3}} \alpha \gamma$ Critical energy $u_{c} = \frac{3\hbar c}{2} \frac{\gamma^{3}}{\rho_{band}}$

- Electrons are produced at the chamber wall due to photo-emission. Quantum efficiency $Y_1=0.1-0.2$.
- Electron production by a bunch per m passage.

$$n_{e,pri} = N_{\gamma} Y_1 N_p (m^{-1})$$

Secondary electron

Synchrotron radiation

Number of photon per meter, proton

$$N_{\gamma} = rac{5lpha}{2\sqrt{3}}rac{\gamma}{
ho_{Bend}}$$
 ho_{bend} =11.3km(TLEP), 6km(CEPC)

Critical energy

$$E_c = \frac{3\hbar c}{2} \frac{\gamma^3}{\rho_{Bend}}$$

- Quantum efficiency of electron production, $Y_1=0.1-0.2$
- Electron production by a bunch per m passage.

$$n_{e,pri} = N_{\gamma} Y N_{p} (m^{-1})$$

- Chamber cross section 0.005 m⁻² (tentative)
- Electron density exceeds $\rho_{e,th}$ =7.8x10⁹ m⁻³ even in a bunch passage.
- Antechamber and other cures are necessary.

Simulation of electron cloud build up in TLEP

CEPC electron cloud build-up for partial double ring scheme

- Bunches are injected in 3000m area in circum.
 50km. Bunch spacing is about 50m for 50 bunches.
- Electron cloud density for δ_{2max} =1.8 and 2.2.

 ρ_e can be threshold $1x10^{12}$ m⁻³.

Electron cloud effects in FCC-ee

- TLEP-Z
- $N_b = 90300$, $L_{b-b} = 1.1$ m
- $N_p = 3.3 \times 10^{10}$, $<\beta> = 100 \text{m}$, $\sigma_x = 95 \mu\text{m}$, $\sigma_y = 10 \mu\text{m}$

$$\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$$

• ω_e =2 π x127GHz, $\omega_e\sigma_x$ /c=13

$$\rho_{e,th} = \frac{2\gamma \nu_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L}$$

$$K = \omega_e \sigma_z / c$$

$$Q = \min(\omega_e \sigma_z / c, 7)$$

- $\rho_{e,th}$ =7.8x10⁹ m⁻³. Threshold is very weak density.
- KEKB 5x10¹¹, SuperKEKB 1x10¹¹

Parameters related to EC instability

		CEPC	TLEP-Z	TLEP-W	TLEP-H	TLEP-t
Circumf	C (km)	54	100	100	100	100
Energy	E (GeV)	120	45.5	80	120	175
No. bunches	N _b	49	90300	5162	770	78
Bunch pop	$N_p (10^{11})$	3.8	0.33	0.6	0.8	1.7
Beam I-density	λ (10 ¹⁰ m ⁻¹)	0.74	3.0	0.3	0.06	0.0013
Beam size (av.)	$σ_x/σ_y$ (μm)	583/32	95/10	164/10	247/11	360/16
Bunch length	$\sigma_{z,tot}(mm)$	2.6	5.0	3.0	2.4	2.5
Synch. tune	ν_{s}	0.18	0.015	0.037	0.056	0.075
γ prod. rate	N_{γ} (/m/e ⁺)	0.28	0.059	0.10	0.16	0.23
e⁻ prod. rate	$n_{e,prod}$ (10 ¹⁰ m ⁻¹)	1.1	0.020	0.062	0.12	0.39
Electron freq.	$\omega_{\rm e}/2\pi$ (GHz)	137	127	171	174	171
Electron osci.	$\omega_{\rm e}\sigma_{\rm z,tot}/c$	7.5	13	11	8.7	9.0
Thr. density	$ ho_{e,th}$ (10 10 m $^{-3}$)	104	0.78	3.4	7.7	15
Tune shift	$\Delta \nu$ at $\rho_{\text{e,th}}$	0.034	0.0025	0.0061	0.0092	0.012

Simulation for TLEP-Z

Growth of emittance

Coherent motion in

$$y_{+}(z), y_{-}(z), \sigma_{y+}(z)$$

Threshold is $\rho_{e,\text{th}}\text{=}0.8x10^{10}~\text{m}^{\text{-}3}$, agree with the analytic formula $0.78x10^{10}.$

Ion instability in FCC-ee (TLEP-Z)

- $N_b = 90300$, $L_{sp} = 0.75$ m(2.5 ns)
- N_e =3.3x10¹⁰,< β >=50m, σ_x =67 μ m, σ_y =7 μ m
- Dispersion increases σ_x , assume $2^{1/2}$ times controlled by ϵ_x in simulation.
- ϵ_x =0.09nm, ω_i =2 π x103MHz, ω_e L_{sp}/c=1.61<- critical for trap in the bunch train,

$$\varepsilon_x$$
 =0.18nm, ω_i =2 π x88MHz, ω_e L_{sp}/c=1.38

• Ion production rate for CO, $n_i = 0.045$ Ne P(Pa), $n_i (10^{-8} \text{ Pa}) = 14.9 (/(\text{m.e}^-)).$

Simulation results for P=10⁻⁸ Pa

Ions are trapped partially for ε_x =0.09nm

Bunch-by-bunch Feedback G=0.1(10 turn) is necessary.

Coupled bunch instability observed in SuperKEKB

- SuperKEKB started from Feb. 2016. (no collsion)
- I(e+)=260mA, I(e-)=200mA in early April.
- e+ beam is unstable only in the early stage (Mar16), but is stable in Apr. Antechamber works well.
- Ion instability is observed in e- beam. The growth becomes weak gradually.

Mode analysis (Tobiyama)

Correspond to $5120-\omega_i/\omega_0$

Vertical beam size seems several times higher than the design at present.

Growth and mode change slightly day-by-day

- $\omega_{
 m i}/\omega_0$ =140 for the design beam size
- ω_i/ω_0 =70-80 at present.
- $\omega_i^{\sim}(\sigma_x\sigma_y)^{1/2}$. σ_y is 4 times of design.

Summary

- Beam-beam effects and luminosity expectation have been studied for FCC-ee's, CEPC and TLEP.
- Beamstrahlung and lifetime issue are evaluated.
- Design tools for beam-beam study are ready.
- Design parameters are achieved in weak-strong simulation, but are not in strong-strong simulations, because beam-beam coherent instability in <xz> is seen in H and Z.
- Electron cloud and ion instabilities in TLEP-Z are challenging issues.
- Threshold of electron density was given for FCCee's.
- Required vacuum pressure and feedback power were given preliminary.

Thank you for your attention

Schematic view of the simulation

- Calculate trajectory interacting with colliding beam.
- Particles emit synchrotron radiation due to the momentum kick dp/ds.

