Field quality, correctors and filling factor in the arcs

E. Todesco, S. Izquierdo Bermudez (CERN)
B. Dalena (CEA)

With contributions from L. Bottura, P. Hagen, D. Tommasini,
R. Garcia Tomas, D. Schulte
Correctors needed in the arc
- Do we have some correctors whose length becomes very long?
- Do we have to launch special R&D?

Field quality targets [B. Dalena talk, this conference]
- Feedback from tracking
- What are we aiming at? How much more difficult than LHC?

Review of interconnection
- Did we take reasonable hypothesis?

General goal
- See all ways to increase the filling factor in the cell (fraction of the cell covered by dipolar field)
 - Today we are at 80%, we should aim at 85%
 - Cell semilength is 100 m, so every meter per half cell is 1% and can be useful
The magnet at 16 T is at the Nb\textsubscript{3}Sn wall

- 1 T less would give \textit{beneficial} relax on magnet design (stress, size, protection) and cost (quantity of superconductor) \cite{see talks from D. Tommasini, F. Toral, P. Vedrine, T. Salmi, V. Marinozzi, R. Gupta, Q. Xu, A Verweij, D. Schoerling]

The tunnel size is already close to the 100 km wall

- Larger size becomes problematic \cite{talk from J. Osborne]

\begin{itemize}
\item \textbf{Cost vs field and margin} \cite{[D. Schoerling]}
\end{itemize}
FILLING FACTOR

- **Filling factor definition**
 - Ratio between sum of dipole magnetic lengths (over a cell) and cell length

- **Present status**
 - LHC: cell length 107 m, 6 dipole of 14.3 m, fill factor 80.3%
 - FCC: cell length 214 m, 12 dipoles of 14.3 m, fill factor 80.3%

- **Other than dipole, we have**
 - Quadrupole MQ (2)
 - Orbit corrector MCB (2)
 - Tuning quadrupoles MQT (2) – sometimes they become skew quadrupole to correct coupling
 - Chromatic sextupoles MS (2) – sometimes they become skew sextupoles to correct coupling
 - Sextupole spool pieces MCS (12? 6?)

FCC cell [D. Schulte, B. Dalena]
THE MAIN QUADRUPOLE

- Today requirements: 2300 T of integrated field
 - Over 50 mm with Nb-Ti you can make 250 T/m … this gives 9 m long magnet so we have to go to Nb$_3$Sn
 - This is also why I insisted so much on grading
- With Nb$_3$Sn one can reach 400 T/m
 - [C. Lorin, P. Verdine this conference]
 - So we have 6 m magnet
- Integrated gradient depends on cell length L and phase advance
 \[G_{l_q} = \frac{\sqrt{2}B\rho}{L} \quad \text{for 90 degrees cell} \quad G_{l_q} = \frac{B\rho}{L} \quad \text{for 60 degrees cell} \]
- Is it worth trying a 60 degrees phase advance?
 - This would give requirement of 70%, ie 1600 T m and a 4 m long magnet
 - 2 m = 2% gained!
- Or making a longer cell? Similar effect moving from 200 to 300 m
 - But larger beam size
ORBIT CORRECTORS

- LHC orbit correctors are 2.93 T magnets close to each quadrupole
 - Nb-Ti ribbon technology
 - 0.647 m long, ~2 T m requirement
 - This magnet is attached to the orbit feedback system so it should be able to act with a ramp rate of 100 s to have full field (for LHC today, 0.03 T/s)

- FCC requirement is to have 3.5 T m [B. Dalena talk, this conference]
 - With a 4 T field, we can go for a 1 m long magnet
 - Nb-Ti magnet, looks at hand
 - I would see no reason to push more to save 0.5 m

- Orbit correctors are in the shadow
 - If the requirement goes up, one should think about 6 T magnets
LHC tuning quadrupoles (MQT) are individually powered small quadrupoles close to each main quadrupole

- Nb-Ti ribbon technology
 - 123 T/m, 0.32 m long, 39 T requirement (5% of the MQ)
 - This magnet is attached to the tune feedback system – variations up to 1 T/m/s

FCC requirement is to have 325 T (15% of the MQ) [B. Dalena talk, this conference]

- This because it is assumed that this magnet is also used in the Dispersion Suppressor (DS) to allow optics matching
- But 325 T would imply a 3 m long magnet – too much – or going to Nb$_3$Sn
 - With Nb$_3$Sn one could get a 1 m long magnet with 325 T/m
- It would be wiser to have different magnets, one for the arc at 5% of the MQ and one for the DS
- I would propose a 200 T/m over 50 mm (~6 T peak field), with 0.5 m length

Tuning quadrupoles are in the shadow
LATTICE SEXTUPOLE

Lattice sextupole in the LHC today (56 mm aperture)

- Nb-Ti ribbon technology, gradient is 4430 T/m^2 (0.37 m long)
 - This gives integrated gradient of 1635 T/m requirement or equivalently 0.070 m^2 if normalized with the beam rigidity Bρ
- Lattice sextupole correct chromaticity (not only from the arc)

FCC present requirement is to have 6650 T/m requirement or equivalently 0.040 m^2 [B. Dalena talk, this conference]

- Assuming the same peak field as in the LHC, over 50 mm we can give a gradient of 5560 T/m^2, so this is a ~1.2 m long object
 - There is a wish to have 15000 T/m requirement or equivalently 0.090 m^2
 - This would push the sextupoles towards 3 m length

Lattice sextupoles could be not in the shadow

- Institutes interested in exploring HTS sextupole correctors?
SEXTUPOLE SPOOL PIECES

- Spool pieces in the LHC today (56 mm aperture)
 - Nb-Ti ribbon technology
 - Spool piece gradient 1630 T/m² (0.11 m long)
 - One can make much larger gradient as in the lattice sextupole 4430 T/m²
 - Spool pieces corrects in the LHC a max $b_3=4.35$ units at 7 TeV

- Using the same length (0.11 m) and the lattice sextupole strenght, and rescaling at 50 mm, we can obtain
 - We can correct up to ± 6 units of b_3 at 50 TeV – looks reasonable to me

- We have 10 units swing of b_3, we can tentatively place -7 at injection and 3 at high field

- Sextupole spool pieces have a negligible impact on the lattice
Landau octupoles in the LHC today (56 mm aperture)

- Nb-Ti ribbon technology
 - Gradient $63 \times 10^3 \text{ T/m}^3$ (0.32 m long)
 - Peak field is 1.28 T, one can make at least a factor two stronger
 - Plus the scaling with aperture from 56 to 50 mm, one can go to $220 \times 10^3 \text{ T/m}^3$

FCC request: factor 3 to 6 larger than in the LHC [V. Kornilov talk, this conference]

- Factor 3 can be obtained with the $220 \times 10^3 \text{ T/m}^3$ gradient and keeping the same length 0.32 m
 - Another factor 2 by either doubling the length or placing in the straight part of the ring

Landau octupoles not critical
FIELD QUALITY TARGETS

Target error table may 2015 (Version 0)
- Uncorrected saturation, 10 units persistent
- Most of the geometric to compensate injection

Since then tracking has been done [B. Dalena this workshop] has been plus some new elements
- Saturation can be compensated with iron [S. Izquierdo Bermudez]
- Large b_3 at high field requires more sextupoles
- Double sensitivity on chroma [R. Tomas Garcia], so with 10 units difference between inj and high field we already have 800 chroma swing during ramp

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Systematic</th>
<th>Uncertainty</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geometric</td>
<td>Saturation</td>
<td>Persistent</td>
<td>Injection</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>-10.000</td>
<td>30.000</td>
<td>5.000</td>
<td>-5.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>-2.000</td>
<td>0.500</td>
<td>1.000</td>
<td>-1.000</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>0.300</td>
<td>-1.500</td>
<td>-0.500</td>
</tr>
</tbody>
</table>

FCC main dipole field quality version 0 - 28 May 2015
FIELD QUALITY TARGETS

Proposal for target error table April 2016 (Version 0)
- Corrected saturation, 1 units left (10% error in correction)
- Persistent current from 5 to 10 units

Geometric partially compensates injection
- 2/3 of the errors at injection, 1/3 at high field

With this table we will have three times larger chromaticity change along the ramp and at decay and snapback w.r.t the LHC today
- 50% worse magnets (7 to 10 units persistent current)
- Factor 2 worse coming from optics (1 unit of b_3 gives 80 of chroma instead of 40)

<table>
<thead>
<tr>
<th>Normal</th>
<th>Geometric</th>
<th>Saturation</th>
<th>Persistent</th>
<th>Injection</th>
<th>High Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>-4.000</td>
<td>1.000</td>
<td>10.000</td>
<td>6.000</td>
<td>-3.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>-2.000</td>
<td>0.500</td>
<td>1.000</td>
<td>-1.000</td>
<td>-1.500</td>
</tr>
<tr>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>0.300</td>
<td>-1.500</td>
<td>-0.500</td>
<td>1.300</td>
</tr>
</tbody>
</table>

Systematic
A CHALLENGING MD

Injection in the LHC at 225 GeV would give three times larger effects on chroma
- This would allow to explore the proposed FCC range in the LHC
- MD proposal under study [M. Solfaroli et al]
First guess distance between magnetic lengths: 1.36 m

- L_m: magnetic length (seen by optic files)
- l_{cm}: physical length of the cold mass (tank with He at 1.9 K)
- l_{IC}: length interconnections between cold masses

Experience from first Nb$_3$Sn models 11 T and QXF: $l_{cm} - L_m \approx 950$ mm

- Very different design, aperture but similar values
- Plus 400 mm for interconnections, makes 1.35 m

Challenging but reasonable
Proposed changes

- MCB at 4 T
 - 0.23 m longer
- MQT at 200 T/m but reduced force
 - 0.07 m shorter
- MS at 5560 T/m²
 - But 2.2 m longer in the worse case
- MO at 220×10^3 T/m³

There is still some space free – some meters could be recovered?

- 3 m between MQT and MB, 1 m between MQ and MS
CONCLUSION

- Orbit correctors can be critical if strength goes above 4 T/m
 - A 4 T magnet is ok
- Tuning quadrupoles in the cell should have limited requirements to limit their length to 0.58 m
 - So different (longer?) magnets for the DS
- Lattice sextupole are long (3 m)
 - Larger gradient could be interesting to save 1-2 m … Nb3Sn makes sense?
- Spool pieces are negligible (0.11 m as today)
 - This allows 6 units correction of \(b_3 \)
 - Iteration on FQ to have -6 units of \(b_3 \) at injection and 3 at high field
- Distance between magnetic lengths are tight but fine
- An MD to check the possibility of correcting the chromaticity swing of 800 units would be welcome (3 times larger effects than today in the LHC)
IDEAS

From the optics
- Reducing quadrupole length with 60° phase advance or going to longer cell would save another 2%
- Making the cell tighter and recovering up to 3 m? (3%)

From the magnets
- Developing much stronger sextupoles (Nb₃Sn, HTS ?) would allow saving 2%
- Putting two 15 m long magnets in the same cold mass
 - HL LHC experience with Q1/Q3: 350 mm minimum between cold mass, so 1 m saved per 30 m (3%)
 - Incredibly long cold mass of 30 m, 3% gain – does it makes sense? Probably not
- Nothing to gain on the spools, tuning quad or orbit correctors

I think we have the possibility of issuing a new optics with 85% filling factor and 16-ε T dipoles, with ε → 1