The FCC Conductor Development Plan A. Ballarino, CERN

FCC Week 2016 ROME 11-15 April 2016

Sotto l'alto patronato del Presidente della Repubblica

Outline

\blacktriangleright Nb₃Sn for FCC

- ➢ Nb₃Sn for FCC vs ITER conductor
- ➢ Nb₃Sn for FCC vs Hi-Lumi LHC conductor
- Nb₃Sn Conductor Development Program

HTS potentials

Conclusions

TF Strand Zoo: Nb₃Sn

~ **500 tons** Jc = 800 A/mm² (4.2 K, 12 T)

Worldwide production increased from 15 tons/year up to 100 tons/year

LHC High Luminosity Upgrade

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing:

An integrated luminosity of **250 fb⁻¹ per year**, enabling the goal of L_{int} = **3000 fb⁻¹** twelve years after the upgrade. This luminosity is more than **ten times the luminosity** reach of the first 10 years of the LHC lifetime. **Extension of Physics reach.**

Timeline:Design Study &R&D (2010-2016)Construction and Installation (2017-2025)Commissioning and Physics (2026 - 2035~40)

L. Rossi, CERN

LHC High Luminosity Upgrade Nb₃Sn for the first time in an operating accelerator

Nb₃Sn industrial wires

Bronze Route

12/04/2016

A. Ballarino, CERN

High field Nb₃Sn: state-of-the-art of Hi-Lumi Nb₃Sn industrial production

- PIT(Bruker) and RRP (OST) technology
- Ternary (NbTi)₃Sn or (NbTa)₃Sn compounds \rightarrow Bc2 enhanced by increasing ρ_n without sacrificing Tc and workability (1-2 % at Ti and 2-4 at % Ta)
- Multi-filamentary wires Φ = 0.7 mm and 0.85 mm, filaments/subelements size \sim 40-50 μ m
- > Total quantity: ~ 20 tons

Nb₃Sn for Hi-Lumi LHC: Jc

A. Ballarino, CERN

Measurements – Nb₃Sn for Hi-Lumi

J_c & *B_{c2}* @ 4.22 K

This morning talks on Hi-Lumi conductor by B. Bordini and L. Cooley

	Layout	Sub- Element size	RRR	J _c (12 T), <i>RMS</i> [A/mm ²]	J_c (15 T) , <i>RMS</i> [A/mm²]	J_c (16 T) , <i>RMS</i> [A/mm ²]	J_c (17 T) , <i>RMS</i> [A/mm ²]	B_{c2}, RMS [T]	Sub- Element Shape
0.7 mm RRP	132/169	41 µm	185 , 64	2508, (2450) <i>125</i>	1232 , <i>81</i>	924 , 70	670, 60	23.2 , 0.36	-
	144/169		172,	2408,	1186,	888,	644,	23.2,	
	150/169		30	146	104	91	80	0.52	Hex
0.85 mm RRP	132/169	50 µm	235 , 52	2777 , <mark>(2450)</mark> <i>81</i>	1427, <mark>(1280)</mark> 55	1091 , 48	814 , 43	23.8 , 0.3	
0.7 mm	114		138 , <i>34</i>	2426 , (2450) 66	1357 , 50	1089 , 45	845 , 40	25.9 , 0.32	
PIT	120	44 μm	103 , 50	2302 , 101	1284 , 65	1027 , 57	804 , 49	25.8 , 0.36	Circular
0.85 mm PIT	192	41 µm	175 , 30	2340 , <mark>(2450)</mark> 53	1306 , <mark>(1280)</mark> <i>41</i>	1047 , <i>37</i>	822 , 34	25.8 , 0.3	

Nb₃Sn Hi-Lumi wire challenges: Deff

Nb₃Sn Hi-Lumi wire challenges: RRR

New generation of PIT Nb₃Sn for HE Physics

Nb barrier that protects the other shell of copper. It:1) prevents RRR degradation after deformation;2) enables use of higher Sn content

CERN-Bruker EAS R&D collaboration

Nb₃Sn for Hi-Lumi LHC: cabling

Mechanical properties of PIT and RRP wires appropriate for cabling \rightarrow **Ic degradation of wire < 5 %,** RRR maintained above 100

Nb₃Sn for FCC: challenges

- ➢ Higher Jc at 16 T
- Aggressive Jc and small filaments size
- Industrial fabrication and scale-up for large scale production
- Cost effectives

Final Targets for FCC Conductor

Nb₃Sn

		_
Wire diameter	mm	~ 1
Non-Cu Jc (16 T, 4.2 K)*	A/mm ²	≥1500
μοΔ Μ(1 Τ, 4.2 K)	mT	≤ 150
σ(μοΔΜ) (1 Τ, 4.2 K)	%	≤ 4.5
Deff	μm	≤ 20
RRR	-	≥150
Unit length	km	≥5
Cost	Euro/kA m**	~ 5
*Je ~ 600 A/mm² *Cu:non Cu ~ 1	** 16 T, 4.2 K	

Targets derived from the larger context of magnet design requirements

Nb₃Sn - Jc Target for FCC

Application Needs vs Material Optimization

Application requirements

- □ High in-field Jc
- □ High RRR (>100)

Material optimization

- Improved/optimized pinning
- Antimized rel. A15 content
- Optimized and homogeneous
 A15 composition
- Homogeneous grain morphology and small grain sizes
- Integrity of (Nb) barrier

Heat Treatment

Delicate balance of conflicting requirements

Fully optimized Nb₃Sn conductor ?

C. Tarantini et al, IoP, Vol 28, 095001 (2015)

C. Tarantini et al, IoP, Vol 27, 065013 (2014)

Pinning: Nb-Ti vs Nb₃Sn

NbTi: α -precipitates

Nb₃Sn: grain boundaries

Dominant pinning mechanism: grain boundaries (vortex pinning)

Meingast, Lee and DCL, J. Appl. Phys. 66, 5971

Diameter of Nb₃Sn grains = 100-200 nm

Pinning: Nb-Ti vs Nb₃Sn

Nb₃Sn for higher fields

Increase pinning force and efficiency

12/04/2016

A. Ballarino, CERN

Nb₃Sn – Grain size refinement

- Grain size at optimized heat treatments (150-200 nm) vs vortex spacing at operational fields (~ 12 nm at 16 T). Needed matching of spacing of pinning sites to vortex spacing
- ➤ Grain refinement possible by lowering the reaction temperature. But this is in conflict with the need of reaching stoichiometric Sn composition in the A15 phase → delicate interplay between A15 gain boundary density and compositional homogeneity

Nb₃Sn – Artificial Pinning

Introduction of a nano-inclusions in the Nb₃Sn \rightarrow increase of the pinning strength by:

Reduction of grain size (pinning by grain boundary)

Enhanced point pinning induced by additional defects

Periodicity of lattice broken at the grain boundaries and/or at the interface with an inclusion/precipitation

Nb₃Sn – Grain size refinement via AP Thin films produced by electron beam co-evaporation Grain size refined to 15-20 nm (Fp)max shifted to ~ 0.5 Birr

D. Dietrich and R. Scanlan, IEEE Trans.Appl. Supercon, 1997 D. Dietrich and A. Godeke, Cryogenics, 48 (2008) 331-340

Nb₃Sn – Grain size refinement via AP (Nb-Zr)₃Sn <u>wires</u> produced by Internal Oxidation method ➤ ZrO₂ precipitates in Nb₃Sn wires

X. Xu, M. Sumption, X. Peng, E. W. Collins , Appl. Phys. Lett. 104 (2014)

A. Ballarino, CERN

Nb₃Sn –AP via Ta nanoinclusions

Bronze-route processed **wires**

Nb matrix with ribbon-like Ta inclusions (Nb 8wt% Ta)

M. Klemm, E. Seibt, W. Specking, J. Xu, R. Flukiger, Supercon, Sci. Technol. 3 (1990)

Artificial pinning via metallic nano-inclusions

Nb₃Sn – AP via irradiation

Radiation induced nano-site defect clusters acting as pinning enters \rightarrow enhancement of Jc

T. Spina, C. Scheuerlein, D. Richter, B. Bordini,L. Bottura, A. Ballarino, and R. Flükiger IEEE Trans. on Appl. Supercond., 25, 2015 A. Ballarino, CERN

> Nb₃Sn has potentials for higher Jc at 16 T

AP can enable achievement of the target Jc performance with the required margin required for assuring a largescale and cost-effective production

Nb₃Sn Conductor for FCC - Quantity

LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1200 tons Nb-Ti 200 kg HTS FCC-hh (baseline) 100 km, 16 T 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti

FCC Nb₃Sn conductor – Series production

- Total quantity of conductor estimated on the basis of the present input from magnet design ~ 6000 tons
- Required a total production world-wide of ~ 700 -800 tons/year over a period of ~ 7 years (if production by 8 companies)
- ITER production: world-wide production of up to 100 tons/year (8 companies)
- Need for industrial scaling-up of facilities

FCC Nb₃Sn conductor - Cost

- Target cost: < 5 Euro/kA m (16 T, 4.2 K)</p>
- Cost of state-of-the-art accelerator-type Nb₃Sn conductor (estimate based on procurement of relatively small ~1 ton quantities of material):
 ≥ 10 Euro/ kA m (12 T, 4.2 K) →
 > 20 Euro/kA m (16 T, 4.2 K)
- Increase of Jc @ 16 T (from 1000 A/mm² to 1500 A/mm²): most effective way of decreasing cost. Importance of choice of technology, that should enable scale-up, and wire layout/composition
- Analysis and improvement of both processing and manufacturing costs (for raw materials and wire) required

Conductor development strategy Intermediate goals (4 years program) Nb₃Sn

Conductor development program for FCC

- Conductor development program being launched by CERN :
 - > Four years activity (2016-2019);
 - Focus is on demonstration of current capability at 16 T (Jc);
 - Production of wire in industry world-wide
 - Contribution of external institutes for material characterization and study
 - Production at CERN of Rutherford cables and possibly assembly and test of short model coils

Collaborations launched on Nb₃Sn development for FCC

- CERN/KEK Japanese contribution. Japanese industry (JASTEC, Furukawa, SH Copper) and laboratories (Tohoku University and NIMS). **Kick-off meeting** at KEK in February 2016
- CERN/Bochvar High-technology Research Inst. **Russian** contribution. Russian industry (TVEL) and laboratories
- Collaboration agreement with the Technical University of Vienna (TUW)
- Collaboration agreement with the Applied **Superconductivity Centre** at Florida State University

Collaborations to be launched Nb₃Sn - Development for FCC

- CERN/KAT Korean industrial contribution
- CERN/Bruker- European industrial contribution

Technologies being analysed by industry:

- Internal Tin Distributed Barrier
- Internal Tin Single Barrier
 - Powder In Tube

CERN /KEK Collaboration Agreement

Task 1: Definition of the manufacturing route(s) and technologies

Task 2: Definition of the billet(s) and wire(s) layout and composition

Task 3: Fabrication of **R&D billets**

Task 4: Characterization of wire produced from R&D billets Afternoon talk by T. Ogitsu

Task 5: Fabrication of HFM wire (~ 20 km) that will be cabled at CERN and used at CERN for construction of prototype **short-model coils**

HTS for FCC ?

Image © 2013 DigitalGlobe Image © 2013 IGN-France

LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1200 tons Nb-Ti 200 kg HTS FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti FCC-hh 80 km, 20 T 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS

BSCCO 2212

D. Larbalestier et al., Nat. Mat. 13, 375-381 (2014)

Isotropic material

D. Dietderich et al., LBNL

REBCO – Industrial Production

		1						
	PLD	MOD	MOCVD	RCE	CSD	IBAD ABAD	RABiTS™	ISD
SuperPower			+			+		
BRUKER	+					+		
MANUZ				+		+		
SuperOx	+					+		
American Superconductor		+					+	
Fujikura	+					+		
THEVA				+				+
				+		+		
					+	+		
MetOx			+				+	
deutsche nanoschicht					+		+	

12/04/2016

A. Ballarino, CERN

Slide courtesy of T. Puig

Produciton Capacity: 1000 Km/yr Piece length: 500 m

REBCO – Nanocomposite materials

Nanoengineering of the defect structure in the **REBCO** film

Optimization of performance at the operating temperature and field: 1D-APCs 2D-APCs Planar defects Linear defects > Jc(T, B) Superconductor \succ Jc(T,B, θ) Vortex 3D-APCs

> Nanoscale defects for isotropic and strong flux pinning

Nanoparticles

UNIVERSITY of **HOUSTON**

BZO size mostly 3 nm Spacing 12 nm

Typical size of BZO in high lift factor tapes made in conventional MOCVD system: 5 – 6 nm

Courtesy of V. Selvamanickam

REBCO Tape for High Fields

REBCO Tape for High Fields

Courtesy of V. Selvamanickam and T. Puig, adapted

12/04/2016

REBCO Cables in Magnets

300

200

100

-100

-200

300

Aperture = 40 mm

5 T in a background field of 15 T

J. Van Nugteren and G. Kirby, CERN, Eucard 2

HTS use in magnets requires major re-thinking of existing technology and mode of operation – and prototype coils are needed

12/04/2016

40

20

0

-20

-40

20

~1000 m REBCO tape

~70 m of cable

-20

Conclusions

- Performance requirements for Nb₃Sn conductor are challenging
- A large industrial effort is needed in order to convince the community on performance and feasibility of a potential (very) large scale production
- Synergy between magnet designers, superconductor experts, material scientists and industry is required. This synergy is fostered via R&D Collaborations with both industrial partners and external laboratories

FCC Conductor development starts now !

Thanks for your attention !

MgB₂ for High Fields ?

- Simple binary composition
- No weak links at grain boundary
- Low electro-magnetic anisotropy
- Produced with known PIT technology as round wire
- Potentially cheap

But

- Poor connectivity (porosity, second phases at grain boundaries)
- Required improvement of in-field performance

12/04/2016

MgB₂ for High Fields ?

Doping with C source (nano-C, SiC, C nanotubes, $B_4C,...$) – to date C is the only element confirmed to be able to enhance Bc2. C substitutes $B \rightarrow increase$ ρ_N and pinning strength (fine grains \rightarrow GB density)

No effect of nano-particles additions V Braccini, INFM, Italy

- E W Collings, The Ohio State University, US S X Dou, University of University of Wollongong, Australia
- R Flukiger, DPMC, University of Geneve; Switzerland
- W Goldaker, KIT, Germany
- H Kumakura, NIMS, Japan
- Y Ma, et al Chinese Academy of Sciences, China

IEEE Trans. on Appl. Superco.1515 - 1520 (2010)

MgB₂ for High Fields?

- MgB₂ roadmap for in field improvement in place
- Wire performance is expected to reach useful level at 10+Tesla in the next four years
- Activities are focusing on boron optimization, improved mechanical processing and wire architecture

Columbus

Boron

Boron of higher quality than presently used (99% and + compared to 95-98% of today) is known to allow for 50-100% performance improvement

Particle size control

Control of particle size is fundamental to achieve high MgB₂ density, and increase in-field performance through grain boundary pinning

MgB₂ doping

Optimal Carbon doping concentration (3-8%) and vehicles for it will be introduced in production wire without segregation at grain boundaries

Connectivity

Higher MgB₂ density in final wire, and more clean MgB₂ powders thanks to the handling and treatment in controlled atmosphere will increase connectivity further

Superconductor filling factor

Increase in filling factor to > 40% will be allowed by optimized cold working processes

Year	-> 2014	>	2015		2016		2017	2018	2019	
MRI	Dedicated & low field MRI		1,5 Tesla	$\left \right\rangle$	1,5 Tesla & 3 Tesla dedicated	\mathbf{i}	3 Tesla total body	7 Tesla total body	9 Tesla +	
Field	2-3 Tesla		4-5 Tesla		6 Tesla		7 Tesla	8-9 Tesla	10 Tesla +	

Courtesy of G. Grasso