ELECTROWEAK PRECISION OBSERVABLES IN THE STANDARD MODEL AND BEYOND: PRESENT & FUTURE

JORGE DE BLAS

IN COLLABORATION WITH: M. CIUCHINI, E. FRANCO, S. MISHIMA, ARXIV: 1604.XXASAP [HEP-PH] M. PIERINI, L. REINA, L. SILVESTRINI

FCC WEEK 2016 Rome, April 12, 2016

ELECTROWEAK PRECISION OBSERVABLES: PRESENT

Very precise measurements of Z & W boson properties:

$$M_Z, \ \Gamma_Z, \ \sigma^0_{
m had}, \ \sin^2 heta^{
m lept}_{
m Eff}, \ P^{
m pol}_{ au}, \ A_f, \ A^{0,f}_{FB}, \ R^0_f$$
 W obs.
 $M_W, \ \Gamma_W$ (LEP2/Tevatron)

Z-pole obs. (SLD/LEP) **0.002-***O*(1)%

EW precision observables can test the SM to the level of radiative corrections \rightarrow Indirect determination of top & Higgs masses ...

0.02-*O*(1)%

- After Higgs discovery \rightarrow strong (unambiguous) constraints on new physics modifying the electroweak sector (e.g. solutions to the hierarchy problem)
- Several groups/codes for the EW fit: ZFITTER, GAPP, Gfitter, ...

 $M_W, \ \Gamma_W$

THE HEPfit CODE

- General High Energy Physics fitting tool to combine indirect and direct searches of new physics (available under GPL on github) <u>https://github.com/silvest/HEPfit</u>
- Webpage: <u>http://hepfit.romal.infn.it</u>

HEPfit: a Code for the Combination of Indirect and Direct Constraints on High Energy Physics Models.

Higgs Physics

HEPfit can be used to study

Higgs couplings and analyze data

on signal strengths.

Precision Electroweak

Electroweak precision observables

are included in HEPfit

 $\tau \rightarrow \mu \gamma$ with $\delta_{23} = 0.1$

BSM Physics Dynamics beyond the Standard Model can be studied by adding models in HEPfit.

THE HEPfit CODE

- General High Energy Physics fitting tool to combine indirect and direct searches of new physics:
 - Written in C++. Support for MPI parallelization.
 - Dependencies: ROOT, GSL, Boost, Bayesian Analysis Toolkit (BAT)

Beaujean, Caldwell, Greenwald, Kollar, Kröninger, Schulz

- Bayesian Statistical Analysis
- Stand-alone and library modes to compute observables in a given model
- Add new models and/or observables as external modules

Preparing for first official release...

Already in the code:

Models

Observables

Input parameters: {G_µ, α_{em}} (Fixed) $\begin{cases}
m_h, m_t, M_Z, \alpha_s(M_Z^2), \Delta \alpha_{had}^{(5)}(M_Z^2)
\end{cases}$ (Floating) *W* mass parametrized in terms of Δ*r*

 $M_W^2 = rac{M_Z^2}{2} \left(1 + \sqrt{1 - rac{4\pilpha}{\sqrt{2}G_\mu M_Z^2} \left(1 + \Delta r
ight)}
ight)$

Z-pole observables parametrized in terms of effective Zff couplings

$$egin{split} \mathcal{L} &= rac{e}{2s_W c_W} Z_\mu \sum ar{f} \left[egin{split} g_V^f \gamma_\mu - egin{split} g_A^f \gamma_\mu \gamma_5
ight] f \ &= rac{e}{2s_W c_W} Z_\mu \sum ar{f} \left[egin{split} g_L^f \gamma_\mu (1+\gamma_5) + egin{split} g_R^f \gamma_\mu (1-\gamma_5)
ight] f \ &= rac{e}{2s_W c_W} \sqrt{
ho_f} Z_\mu \sum ar{f} \left[(I_3^f - 2 Q_f \kappa_Z^f s_W^2) \gamma_\mu - I_3^f \gamma_\mu \gamma_5
ight] f \end{split}$$

$$\rho_Z^f = \left(\frac{g_A^f}{I_3^f}\right)^2 \qquad \kappa_Z^f = \frac{1}{4|Q_f|s_W^2} \left(1 - \frac{g_V^f}{g_A^f}\right) \qquad s_W^2 = 1 - \frac{M_W^2}{M_Z^2}$$
On-shell rep. scheme

Z-pole observables parametrized in terms of Effective Zff couplings
 Left-Right and Forward-Backward Asymmetries

$$A_{L,R}^{0,f} = A_f = rac{2\mathrm{Re}\left\{rac{g_V^f}{g_A^f}
ight\}}{1+\mathrm{Re}\left\{rac{g_V^f}{g_A^f}
ight\}^2} \qquad A_{FB}^{0,f} = rac{3}{4}A_eA_f \qquad (f=\ell,c,b)$$

Effective electroweak mixing angle

$$\sin^2 heta_{ ext{Eff}}^{ ext{lept}} = ext{Re}\left\{\kappa_Z^\ell
ight\}s_W^2$$

Decay widths (and ratios), hadronic cross section

$$egin{aligned} \Gamma_f \propto \left|
ho_Z^f
ight| \left[\left| rac{g_V^f}{g_A^f}
ight|^2 R_V^f + R_A^f
ight] \ \Gamma_Z, \, \sigma_h^0 &= rac{12\pi}{M_Z^2} rac{\Gamma_e \Gamma_h}{\Gamma_Z^2}, \; R_\ell^0 = rac{\Gamma_h}{\Gamma_\ell}, \; R_{c,b}^0 = rac{\Gamma_{c,b}}{\Gamma_h} \end{aligned}$$

• Theory status:

• M_W : Full EW 2-loop + leading 3-loop & some 4-loop contrib.

M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev D69 (2004) 053006

• $\sin^2 heta^f_{
m Eff}$: Full EW 2-loop + leading higher order contrib.

M. Awramik, M. Czakon, A. Freitas, JHEP 0611 (2006) 048 M. Awramik, M. Czakon, A. Freitas, B.A. Kniehl, Nucl. Phys. B813 (2009) 174-187

• Γ_Z^f : Full fermionic EW 2-loop

A. Freitas, JHEP 1404 (2014) 070

• Γ_W : Only EW one loop

D.Y. Bardin, P.K. Khristova, O. Fedorenko, Nucl. Phys B197 (1982) 1-44 D.Y. Bardin, S. Riemann, T. Riemann, Z. Phys C32 (1986) 121-125

Experimental vs Theoretical uncertainties: Present

	$M_{ m W}$	$\Gamma_{\rm Z}$	$\sigma_{ m had}^0$	R _b	$\sin^2 heta_{ m eff}^\ell$
Exp. error	15 MeV	2.3 MeV	37 pb	6.6×10^{-4}	1.6×10^{-4}
Theory error	4 MeV	0.5 MeV	6 pb	$1.5 imes 10^{-4}$	$0.5 imes10^{-4}$

A. Freitas, PoS(LL2014)050 [arXiv: 1406.6980]

	Data	\mathbf{Fit}	Indirect	Pull
$lpha_s(M_Z^2)$	$0.1185{\pm}0.0005$	$0.1185{\pm}0.0005$	$0.1184{\pm}0.0028$	-0.0
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$0.02750{\pm}0.00033$	$0.02741{\pm}0.00026$	$0.02725{\pm}0.00042$	-0.5
$M_Z [{ m GeV}]^2$	$91.1875{\pm}0.0021$	$91.1879 {\pm} 0.0020$	$91.199 {\pm} 0.011$	+1.0
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	$173.6 {\pm} 0.7$	$176.9 {\pm} 2.5$	+1.3
$m_h [{ m GeV}]$	$125.09 {\pm} 0.24$	$125.09 {\pm} 0.24$	$97.40{\pm}25.59$	-0.9
$M_W[{ m GeV}]$	$80.385 {\pm} 0.015$	$80.365 {\pm} 0.006$	$80.361{\pm}0.007$	-1.4
$\Gamma_{W}[{ m GeV}]$	$2.085{\pm}0.042$	$2.0890{\pm}0.0005$	$2.0890{\pm}0.0005$	+0.1
$\Gamma_Z[{ m GeV}]$	$2.4952{\pm}0.0023$	$2.4945{\pm}0.0004$	$2.4945{\pm}0.0004$	-0.3
$\sigma_h^0[{ m nb}]$	$41.540{\pm}0.037$	$41.488 {\pm} 0.003$	$41.488 {\pm} 0.003$	-1.4
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	$0.2324{\pm}0.0012$	$0.23144{\pm}0.00009$	$0.23144{\pm}0.00009$	-0.8
$P^{ m pol}_{ au}$	$0.1465{\pm}0.0033$	$0.1477{\pm}0.0007$	$0.1477{\pm}0.0007$	+0.4
$A_\ell(\mathrm{SLD})$	$0.1513{\pm}0.0021$	$0.1477{\pm}0.0007$	$0.1472{\pm}0.0008$	-1.9
A_c	$0.670{\pm}0.027$	$0.6682{\pm}0.0003$	$0.6682{\pm}0.0003$	-0.1
$oldsymbol{A_b}$	$0.923{\pm}0.020$	$0.93466{\pm}0.00006$	$0.93466{\pm}0.00006$	+0.6
$A_{ m FB}^{0,\ell}$	$0.0171{\pm}0.0010$	$0.0164{\pm}0.0002$	$0.0163{\pm}0.0002$	-0.8
$A_{ m FB}^{ar 0,ar c}$	$0.0707{\pm}0.0035$	$0.0740{\pm}0.0004$	$0.0740{\pm}0.0004$	+0.9
$\boldsymbol{A_{\rm FB}^{0,b}}$	$0.0992{\pm}0.0016$	$0.1035{\pm}0.0005$	$0.1039{\pm}0.0005$	+2.8
R^0_ℓ	$20.767{\pm}0.025$	$20.752{\pm}0.003$	$20.752{\pm}0.003$	-0.6
$R_c^{\check{0}}$	$0.1721{\pm}0.0030$	$0.17224{\pm}0.00001$	$0.17224{\pm}0.00001$	+0.0
$R_{b}^{reve{0}}$	$0.21629{\pm}0.00066$	$0.21578{\pm}0.00003$	$0.21578 {\pm} 0.00003$	-0.8

Jorge de Blas INFN - Sezione di Roma

	Data	\mathbf{Fit}	Indirect	Pull
$lpha_s(M_Z^2)$	$0.1185{\pm}0.0005$	$0.1185{\pm}0.0005$	$0.1184{\pm}0.0028$	-0.0
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$0.02750{\pm}0.00033$	$0.02741{\pm}0.00026$	$0.02725{\pm}0.00042$	-0.5
$M_Z [{ m GeV}]^2$	$91.1875{\pm}0.0021$	$91.1879 {\pm} 0.0020$	$91.199 {\pm} 0.011$	+1.0
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	$173.6{\pm}0.7$	$176.9 {\pm} 2.5$	+1.3
$m_h [{ m GeV}]$	$125.09 {\pm} 0.24$	$125.09 {\pm} 0.24$	$97.40{\pm}25.59$	-0.9
$M_W [{ m GeV}]$	$80.385{\pm}0.015$	$80.365 {\pm} 0.006$	$80.361{\pm}0.007$	-1.4
$\Gamma_W[{ m GeV}]$	$2.085{\pm}0.042$	$2.0890{\pm}0.0005$	$2.0890{\pm}0.0005$	+0.1
$\Gamma_Z[{ m GeV}]$	$2.4952{\pm}0.0023$	$2.4945{\pm}0.0004$	$2.4945{\pm}0.0004$	-0.3
$\sigma_h^0[{ m nb}]$	$41.540{\pm}0.037$	$41.488 {\pm} 0.003$	$41.488 {\pm} 0.003$	-1.4
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	$0.2324{\pm}0.0012$	$0.23144{\pm}0.00009$	$0.23144{\pm}0.00009$	-0.8
$P^{ m pol}_{ au}$	$0.1465{\pm}0.0033$	$0.1477{\pm}0.0007$	$0.1477{\pm}0.0007$	+0.4
$A_\ell(\mathrm{SLD})$	$0.1513{\pm}0.0021$	$0.1477{\pm}0.0007$	$0.1472{\pm}0.0008$	-1.9
A_c	$0.670{\pm}0.027$	$0.6682{\pm}0.0003$	$0.6682{\pm}0.0003$	-0.1
$oldsymbol{A_b}$	$0.923{\pm}0.020$	$0.93466{\pm}0.00006$	$0.93466{\pm}0.00006$	+0.6
$oldsymbol{A}_{ ext{FB}}^{0,\ell}$	$0.0171{\pm}0.0010$	$0.0164{\pm}0.0002$	$0.0163{\pm}0.0002$	-0.8
$A_{ m FB}^{ar 0,ar c}$	$0.0707{\pm}0.0035$	$0.0740{\pm}0.0004$	$0.0740{\pm}0.0004$	+0.9
$A_{ m FB}^{0,b}$	$0.0992{\pm}0.0016$	$0.1035{\pm}0.0005$	$0.1039{\pm}0.0005$	+2.8
R^0_ℓ	$20.767{\pm}0.025$	$20.752{\pm}0.003$	$20.752{\pm}0.003$	-0.6
$R_c^{ m 0}$	$0.1721{\pm}0.0030$	$0.17224{\pm}0.00001$	$0.17224{\pm}0.00001$	+0.0
$R_{b}^{ar{0}}$	$0.21629{\pm}0.00066$	$0.21578{\pm}0.00003$	$0.21578 {\pm} 0.00003$	-0.8

Jorge de Blas INFN - Sezione di Roma

	Data	\mathbf{Fit}	Indirect	Pull
$lpha_s(M_Z^2)$	$0.1185{\pm}0.0005$	$0.1185{\pm}0.0005$	$0.1184{\pm}0.0028$	-0.0
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$0.02750{\pm}0.00033$	$0.02741{\pm}0.00026$	$0.02725{\pm}0.00042$	-0.5
$M_Z[{ m GeV}]$	$91.1875{\pm}0.0021$	$91.1879{\pm}0.0020$	$91.199 {\pm} 0.011$	+1.0
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	$173.6 {\pm} 0.7$	$176.9 {\pm} 2.5$	+1.3
$m_h [{ m GeV}]$	$125.09 {\pm} 0.24$	$125.09 {\pm} 0.24$	$97.40{\pm}25.59$	-0.9
$M_W [{ m GeV}]$	$80.385{\pm}0.015$	$80.365 {\pm} 0.006$	$80.361{\pm}0.007$	-1.4
$\Gamma_W[{ m GeV}]$	$2.085{\pm}0.042$	$2.0890{\pm}0.0005$	$2.0890{\pm}0.0005$	+0.1
$\Gamma_Z[{ m GeV}]$	$2.4952{\pm}0.0023$	$2.4945{\pm}0.0004$	$2.4945{\pm}0.0004$	-0.3
$\sigma_h^0[{ m nb}]$	$41.540{\pm}0.037$	$41.488{\pm}0.003$	$41.488{\pm}0.003$	-1.4
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	$0.2324{\pm}0.0012$	$0.23144{\pm}0.00009$	$0.23144{\pm}0.00009$	-0.8
$P^{ m pol}_{ au}$	$0.1465{\pm}0.0033$	$0.1477{\pm}0.0007$	$0.1477{\pm}0.0007$	+0.4
$A_\ell(\mathrm{SLD})$	$0.1513{\pm}0.0021$	$0.1477{\pm}0.0007$	$0.1472{\pm}0.0008$	-1.9
A_c	$0.670 {\pm} 0.027$	$0.6682{\pm}0.0003$	$0.6682{\pm}0.0003$	-0.1
A_b	$0.923{\pm}0.020$	$0.93466{\pm}0.00006$	$0.93466{\pm}0.00006$	+0.6
$A^{0,\ell}_{ m FB}$	$0.0171{\pm}0.0010$	$0.0164{\pm}0.0002$	$0.0163{\pm}0.0002$	-0.8
$A_{ extsf{FB}}^{ar{0},ar{c}}$	$0.0707 {\pm} 0.0035$	$0.0740{\pm}0.0004$	$0.0740 {\pm} 0.0004$	+0.9
$A_{ m FB}^{\overline{0,b}}$	$0.0992{\pm}0.0016$	$0.1035 {\pm} 0.0005$	$0.1039 {\pm} 0.0005$	+2.8
R^0_ℓ	$20.767{\pm}0.025$	$20.752{\pm}0.003$	$20.752{\pm}0.003$	-0.6
R_c^0	$0.1721{\pm}0.0030$	$0.17224{\pm}0.00001$	$0.17224{\pm}0.00001$	+0.0
R_b^0	$0.21629{\pm}0.00066$	$0.21578{\pm}0.00003$	$0.21578{\pm}0.00003$	-0.8

Only I significant discrepancy

 Good agreement between direct and indirect determinations of the values of the input parameters

Indirect: Best-fit value, excluding the direct exp. measurement from the fit

Indirect: Best-fit value, excluding the direct exp. measurement from the fit

Parametric uncertainties dominated by $\Delta \alpha^{(5)}_{\rm had}(M_Z^2) = 0.02750 \pm 0.00033$

H. Burkhardt, B. Pietrzyk, Phys. Rev. D84 (2011) 037502

	Prediction	$lpha_s(M_Z^2)$	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	M_Z	m_t
$M_W[{ m GeV}]$	$80.361 {\pm} 0.008$	± 0.000	± 0.006	± 0.003	± 0.005
$\Gamma_W[{ m GeV}]$	$2.0887{\pm}0.0007$	± 0.0002	± 0.0005	± 0.0002	± 0.0004
$\Gamma_Z \; [{ m GeV}]$	$2.4943{\pm}0.0005$	± 0.0002	± 0.0003	± 0.0002	± 0.0002
$\sigma_h^0[{ m nb}]$	$41.488 {\pm} 0.003$	± 0.002	± 0.000	± 0.002	± 0.001
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	$0.23149 {\pm} 0.00012$	± 0.00000	± 0.00012	± 0.00001	± 0.00002
$P^{ m pol}_{ au}$	$0.1473{\pm}0.0009$	± 0.0000	± 0.0009	± 0.0001	± 0.0002
$A_\ell(\mathrm{SLD})$	$0.1473{\pm}0.0009$	± 0.0000	± 0.0009	± 0.0001	± 0.0002
A_c	$0.6680{\pm}0.0004$	± 0.0000	± 0.0004	± 0.0001	± 0.0001
A_b	$0.93464{\pm}0.00008$	± 0.00000	± 0.00007	± 0.00001	± 0.00001
$A_{ m FB}^{0,\ell}$	$0.0163{\pm}0.0002$	± 0.0000	± 0.0002	± 0.0000	± 0.0000
$A_{ m FB}^{0,c}$	$0.0738{\pm}0.0005$	± 0.0000	± 0.0005	± 0.0001	± 0.0001
$A_{ m FB}^{0,b}$	$0.1033{\pm}0.0007$	± 0.0000	± 0.0006	± 0.0001	± 0.0001
$R^{ ilde{0}}_{ ho}$	$20.752{\pm}0.004$	± 0.003	± 0.002	± 0.000	± 0.000
$R_c^{\check{0}}$	$0.17223{\pm}0.00001$	± 0.00001	± 0.00001	± 0.00000	± 0.00001
$R_b^{reve{0}}$	$0.21579 {\pm} 0.00003$	± 0.00001	± 0.00000	± 0.00000	± 0.00003

Measured with inclusive processes. Smaller uncertainty if using exclusive with pQCD, etc.

Assume $\delta(\Delta \alpha_{had}^{(5)}(M_Z^2)) \approx 0.0005$ in Future analyses

EW PRECISION OBSERVABLES AT THE FCCEE

Physics at the FCCee: Several projected runs

	Z pole	WW threshold	HZ threshold	$t\bar{t}$ threshold	Above $t\bar{t}$ threshold
$\sqrt{s} \; [\text{GeV}]$	90	160	240	350	> 350
$\mathcal{L}(ab^{-1}/year)$	86	15	3.5	1.0	1.0
Years of run	$0.3 \ / \ 2.5$	1	3	0.5	3
Events	$10^{12}/10^{13}$	6×10^7	2×10^6	2×10^5	$7.5 imes 10^4$

 Each run will bring improvements on the precision of different sectors of Electroweak precision observables

EW PRECISION OBSERVABLES AT THE FCCEE

Expected sensitivities to EWPO

	Current Data	Before FCC	FCCee-Z (no pol.)	\mathbf{FCCee} -Z	FCCee-WW	\mathbf{FCCee} - HZ	\mathbf{FCCee} - $t\bar{t}$
$lpha_s(M_Z^2)$	$0.1185{\pm}0.0005$		± 0.0002				
$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	$0.02750{\pm}0.00033$	±0.00005 (?)					
$M_Z[{ m GeV}]$	$91.1875{\pm}0.0021$		± 0.0001				
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	± 0.6					± 0.014
$m_h [{ m GeV}]$	$125.09{\pm}0.24$	± 0.05				± 0.007	
$M_W[{ m GeV}]$	$80.385{\pm}0.015$	± 0.011			± 0.001		
$\Gamma_W[{ m GeV}]$	$2.085{\pm}0.042$				± 0.005		
$\Gamma_Z[{ m GeV}]$	$2.4952{\pm}0.0023$		± 0.0001				
$\sigma_h^0[{ m nb}]$	$41.540{\pm}0.037$		± 0.025				
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$0.2324{\pm}0.0012$		± 0.0001				
$P^{ m pol}_{ au}$ on	$0.1465{\pm}0.0033$		± 0.0002				
$\dot{A_\ell}$	$0.1513{\pm}0.0021$			± 0.000021			
A_{c}	$0.670{\pm}0.027$			± 0.01			
A_b	$0.923{\pm}0.020$			± 0.007			
$A_{ m FB}^{0,\ell}$	$0.0171{\pm}0.0010$		± 0.0001				
$A_{ m FB}^{ar 0,ar c}$	$0.0707{\pm}0.0035$		± 0.0003				
$A_{ m FB}^{ar 0,ar b}$	$0.0992{\pm}0.0016$		± 0.0001				
$R^{0}_{ ho}$	$20.767{\pm}0.025$		± 0.001				
$R_c^{\check{0}}$	$0.1721{\pm}0.0030$		± 0.0003				
$R^{ar{0}}_b$	$0.21629 {\pm} 0.00066$		± 0.00006				

TLEP WG, arXiv: 1308.6176 [hep-ex]

EW PRECISION OBSERVABLES AT THE FCCEE

Expected sensitivities to EWPO and Higgs observables

	Current Data	Before FCC	FCCee-Z (no pol.)	FCCee-Z	FCCee-WW	FCCee-HZ	FCCee- $t\bar{t}$
$\alpha_s(M_Z^2)$	$0.1185{\pm}0.0005$		± 0.0002				
$\Delta \alpha_{\rm had}^{(5)}(M_z^2)$	$0.02750{\pm}0.00033$	± 0.00005 (?)					
$M_Z[{ m GeV}]$	$91.1875{\pm}0.0021$	()	± 0.0001				
$m_t [{ m GeV}]$	$173.34{\pm}0.76$	± 0.6					± 0.014
$m_h [{ m GeV}]$	$125.09{\pm}0.24$	± 0.05				± 0.007	
$M_W[{ m GeV}]$	$80.385{\pm}0.015$	± 0.011			± 0.001		
$\Gamma_W[{ m GeV}]$	$2.085{\pm}0.042$						
$\Gamma_Z[{ m GeV}]$	$2.4952{\pm}0.0023$		± 0.00			Before F	CCee-HZ
$\sigma_h^0[{ m nb}]$	$41.540{\pm}0.037$		± 0.02			\mathbf{FCC}	
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	$0.2324{\pm}0.0012$		± 0.00 -	_			0.407
$P^{ m pol}_{ au}$	$0.1465{\pm}0.0033$		± 0.00	σ_{HZ}			0.4%
A_ℓ	$0.1513{\pm}0.0021$			$\sigma_{HZ}\operatorname{Br}(H \to$	$b\bar{b})$	$\sim 10\%$	0.2%
A_c	$0.670{\pm}0.027$			$\sigma_{HZ} \operatorname{Br}(H \to$	$c\bar{c}$)		1.2%
A_b	$0.923{\pm}0.020$			$\sigma_{HZ}\operatorname{Br}(H \to$	(gg)		1.4%
$A_{ m FB}^{0,\ell}$	$0.0171{\pm}0.0010$		± 0.00	$\sigma_{HZ} \operatorname{Br}(H \to$	$W^{\pm}W^{\mp *})$	$\sim 5 ext{-}10\%$	0.9%
$A_{ m FB}^{0,c}$	$0.0707{\pm}0.0035$		± 0.00	$\sigma_{HZ}\operatorname{Br}(H \to$	$(au^+ au^-)$	$\sim 15\%$	0.7%
$A_{ m FB}^{0,b}$	$0.0992{\pm}0.0016$		± 0.00	$\sigma_{HZ}\operatorname{Br}(H \to$	$ZZ^{*})$	$\sim 5 ext{-}15\%$	3.1%
$R^{ar{0}}_{\ell}$	$20.767 {\pm} 0.025$		± 0.00	$\sigma_{HZ}\operatorname{Br}(H o$	$\gamma\gamma)$	$\sim 510\%$	3.0%
$R^{\check{0}}_{m{c}}$	$0.1721{\pm}0.0030$		± 0.00	$\sigma_{HZ}\operatorname{Br}(H o$	$\mu^+\mu^-$)	$\sim 1520\%$	13%
$R_b^{ar{0}}$	$0.21629{\pm}0.00066$		± 0.000	· · · · ·	,		

TLEP WG, arXiv: 1308.6176 [hep-ex]

EW PRECISION OBSERVABLES IN THE SM: FUTURE

	Experimental	vs T	⁻ heoretical	uncertainties:
-			neer eereur	

Quantity	Theory error	Exp. error
$M_{\rm W} [{\rm MeV}]$	4	15
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	4.5	16
$\Gamma_{\rm Z} \ [{\rm MeV}]$	0.5	2.3
$R_b \ [10^{-5}]$	15	66

	Quantity	ILC	FCC-ee	CEPC	Projected theory error
ė	$M_{\rm W} [{\rm MeV}]$	3-4	1	3	1
tur	$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	1	0.6	2.3	1.5
2	$\Gamma_{\rm Z} [{\rm MeV}]$	0.8	0.1	0.5	0.2
	$R_b \ [10^{-5}]$	14	6	17	5-10

A. Freitas, arXiv: 1604.00406

Theoretical effort necessary to achieve FCCee precision

Present

EWPD LIMITS ON PHYSICS BEYOND THE SM: PRESENT VS. FUTURE

(PRELIMINARY RESULTS)

EWPD LIMITS ON PHYSICS BEYOND THE SM

- <u>New Physics beyond the Standard Model</u>: Several model-independent NP scenarios implemented within <u>HEP fit</u>
 - Oblique parameters
 - Non-Standard Zbb couplings
 - Modified Higgs couplings
 - Dim 6 SMEFT
- General strategy for the calculation of future sensitivities:
 - Assume theoretical uncertainties will be reduced as needed to reach FCCee precision
 - Use SM best-fit results as central values for future data. Limits provide FCCee sensitivity to New Physics.

 Oblique Parameters: New Physics contributing to gauge boson selfenergies. EWPD depends only on 3 parameters

M.E. Peskin, T. Takeuchi, Phys. Rev. D46 (1992) 381-409

• In models where EWSB is realized linearly, U is expected to be << S, T $\int dim 8$ dim 6

	Fit result	Correlations		
\boldsymbol{S}	$0.09 {\pm} 0.10$	1.00		
${oldsymbol{T}}$	$0.10 {\pm} 0.12$	0.86	1.00	
$oldsymbol{U}$	$0.02{\pm}0.09$	-0.54	-0.81	1.00

Jorge de Blas INFN - Sezione di Roma

JORGE DE BLAS INFN - SEZIONE DI ROMA

Oblique Parameters: Present vs. Future

Oblique Parameters: Present vs. Future

Current theoretical calculations insufficient for FCCee -precision physics

80.34 80.36 80.38 80.4 80.42

0.096 0.098

0.1

EW LIMITS ON NP: NON-STANDARD Zbb couffelings

- Non-standard Zbb couplings • One significant discrepancy in the SM fit: $A_{FB}^{0,b} \sim 2.8 \sigma$ 0.001 0.001 0.001 0.001
- Requires NP corrections to Zbb couplings:

$$g^b_{L,R} = g^{b\, ext{SM}}_{L,R} + \delta g^b_{L,R}$$

6σ

5σ

4σ

3σ

2σ

1σ

0.102 0.104

 $A_{FB}^{0,b}$

00

EW LIMITS ON NP: NON-STANDARD <u>Zbb</u> couplings

	Fit result	Correla	ations
δg^b_R	$0.016 {\pm} 0.006$	1.00	
$\delta g_L^{\overline{b}}$	$0.0025{\pm}0.0014$	0.90	1.00
δg_V^b	$0.018 {\pm} 0.007$	1.00	
$\delta g^{\dot{b}}_A$	$-0.013{\pm}0.005$	-0.98	1.00

EW LIMITS ON NP: NON-STANDARD <u>Zbb</u> couplings

Non-standard Zbb couplings: Present vs. Future

EW LIMITS ON NP: MODIFIED HIGGS COUPLINGS

- Non-standard Higgs couplings
- Effective Lagrangian for a light Higgs+Approximate custodial symmetry

$$\begin{split} & \mathcal{L}_{\text{Eff}} = \frac{v^2}{4} \text{Tr} \left[D_{\mu} \Sigma^{\dagger} \Sigma \right] \left(1 + 2\kappa_V \frac{h}{v} + \ldots \right) \\ & -m_i \bar{f}_L^i \left(1 + 2\kappa_f \frac{h}{v} + \ldots \right) f_R^i \\ & \text{Rescaled hff couplings} \end{split}$$

EWPO: One-loop contribution to S & T

$$S = rac{1}{12\pi} \left(1 - \kappa_V^2
ight) \log rac{\Lambda^2}{m_h^2} \ T = -rac{3}{16\pi c_W^2} \left(1 - \kappa_V^2
ight) \log rac{\Lambda^2}{m_h^2}$$

$$\Lambda = rac{4\pi v}{\sqrt{\left|1-\kappa_V^2
ight|}}$$

Cut-off of the Higgs Eff. Lag.

EW LIMITS ON NP: MODIFIED HIGGS COUPLINGS

Non-standard Higgs couplings: Present

JORGE DE BLAS INFN - SEZIONE DI ROMA FCC WEEK 2016 Rome, April 12, 2016

S

EW LIMITS ON NP: MODIFIED HIGGS COUPLINGS

Non-standard Higgs couplings: Present vs. Future

The SM as an Effective Theory

$$\mathcal{L}_{\text{Eff}} = \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

$$\mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i$$
 $[\mathcal{O}_i] = d$

- General parametrization compatible with assumptions
- Provides an ordering principle (Power counting)
- Provides (Lorentz & Gauge invariance) correlations between different types of observables
- Dim 5: | operator
 S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566
- Dim 6: 59 operators

W. Buchmüller, D. Wyler, Nucl. Phys. B268 (1986) 621
C. Arzt, M.B. Einhorn, J. Wudka, Nucl. Phys. B433 (1995) 41
B.Grzadkowski, M.Iskrynski, M.Misiak, J.Rosiek, JHEP 1010 (2010) 085

We use the GIMR/Warsaw basis

- EWPO sensitive to:
 - Oblique corrections $\mathcal{O}_{HD} = \left| H^{\dagger} i D_{\mu} H \right|^{2} \quad \mathcal{O}_{HWB} = (H^{\dagger} \sigma_{a} H) W^{a}_{\mu\nu} B^{\mu\nu}$ $T = -\frac{1}{2\alpha} C_{HD} \frac{v^{2}}{\Lambda^{2}} \qquad S = \frac{4s_{W}c_{W}}{\alpha} C_{HWB} \frac{v^{2}}{\Lambda^{2}}$
 - Corrections to EW Vff couplings $\mathcal{O}_{Hf}^{(1)} = (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{f}\gamma^{\mu}f) \quad \mathcal{O}_{Hf}^{(3)} = (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{a}H)(\overline{f}\gamma^{\mu}\sigma_{a}f)$

$$\delta g_L^{u(
u),d(e)} = -rac{1}{2} \left(C_{Hq(l)}^{(1)} \mp C_{Hq(l)}^{(3)}
ight) rac{v^2}{\Lambda^2} \qquad \delta g_R^{u,d,e} = -rac{1}{2} C_{Hu,d,e}^{(1)} rac{v^2}{\Lambda^2} \ \delta V_L^{q,l} = C_{Hq,l}^{(3)} rac{v^2}{\Lambda^2}$$

• Also sensitive to $\mathcal{O}_{ll} = (\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$ through indirect effects (It affects the extraction of G_F from μ decay)

Dimension six SMEFT: Present

)	95% prob. bound on					
'Sa		$rac{C_i}{\Lambda^2} \; [{ m TeV^-2}]$		$\Lambda ~[{ m TeV}]$		
ver	Operator		$C_i = 1$	$C_i = -1$	$C_i = \pm 1$	
uni	$\mathcal{O}_{HWB} = ig(H^\dagger \sigma_a H ig) W^a_{\mu u} B^{\mu u}$	[-0.009,0.003]	16(17%)	$11(\mathbf{83\%})$	12	
/or	$\mathcal{O}_{HD} = \left H^\dagger D_\mu H ight ^2$	[-0.027,0.004]	$11(\mathbf{7\%})$	$6.5(\mathbf{93\%})$	6.6	
. Flav	$\mathcal{O}_{Hl}^{(1)} = (H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H) \left(\overline{l_L} \gamma^{\mu} l_L ight)$	[-0.005,0.012]	9.7 (82%)	$13(\mathbf{18\%})$	9.9	
me	$\mathcal{O}_{Hl}^{(3)} = (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{l_L} \gamma^\mu \sigma_a l_L ight)$	[-0.011,0.005]	$14 (\mathbf{21\%})$	$10(\mathbf{79\%})$	10	
ţ	${\cal O}_{He} = (H^\dagger i \dot{D}_\mu H) \left(\overline{e_R} \gamma^\mu e_R ight)$	[-0.015,0.007]	11 (19%)	$8.6(\mathbf{81\%})$	8.6	
at a	${\cal O}^{(1)}_{Hq} = (H^\dagger i \overleftrightarrow{D}_\mu H) (\overline{q_L} \gamma^\mu q_L)$	[-0.027,0.043]	$5.1(\mathbf{67\%})$	$5.9(\mathbf{33\%})$	5.3	
SOL	$\mathcal{O}^{(3)}_{Hq} ~~ (H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{q_L} \gamma^\mu \sigma_a q_L ight)$	[-0.011, 0.015]	8.9 (56%)	$9.6(\mathbf{44\%})$	9.1	
erat	$\mathcal{O}_{Hu} = (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{u_R} \gamma^\mu u_R ight)$	[-0.071,0.081]	$3.7(\mathbf{54\%})$	$3.9(\mathbf{46\%})$	3.7	
ope	$\mathcal{O}_{Hd} = (H^\dagger i \overset{low}{D}_\mu H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-0.14,0.070]	$3.7(\mathbf{22\%})$	$2.8(\mathbf{78\%})$	2.9	
-)	$\mathcal{O}_{ll} = (ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$	[-0.0096, 0.023]	7.0(77%)	$9.8(\mathbf{23\%})$	7.3	

NP scale > 3-16 TeV ($C_i \sim 1$)

Dimension six SMEFT: Present

$\overline{}$		95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV ⁻ 2]	95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV ⁻ 2]
me	Operator	7 x	
le til	$\mathcal{O}_{Hl}^{(1)} (H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H) \left(\overline{l_L} \gamma^{\mu} l_L ight)$	[-0.013, 0.038]	[-0.005,0.012]
sam	${\cal O}_{Hl}^{(3)}~~(H^{\dagger}i \overset{\leftrightarrow}{D}{}^a_{\mu} H) \left(\overline{l_L} \gamma^{\mu} \sigma_a l_L ight)$	$\left[-0.065, 0.010\right]$	[-0.011,0.005]
Je	${\cal O}_{He}^{}~~(H^{\dagger}i D_{\mu} H) \left(\overline{e_R} \gamma^{\mu} e_R ight)$	$\left[-0.026, 0.015 ight]$	[-0.015,0.007]
t th	${\cal O}^{(1)}_{Hq} ~~ (H^\dagger i \stackrel{\leftrightarrow}{D}_{\mu} H) (\overline{q_L} \gamma^\mu q_L)$	$\left[-0.108, 0.077 ight]$	[-0.027,0.043]
or a	${\cal O}_{Hq}^{(3)} (H^\dagger i \overleftrightarrow{D}^a_\mu H) (\overline{q_L} \gamma^\mu \sigma_a q_L)$	[-0.190, 0.005]	[-0.011, 0.015]
rate	${\cal O}_{Hu} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{u_R} \gamma^\mu u_R ight)$	$\left[-0.230, 0.440\right]$	[-0.071,0.081]
ope	${\cal O}_{Hd} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-1.2, -0.140]	[-0.14,0.070]
≷	$\mathcal{O}_{ll} ~~(ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$	[-0.090, 0.030]	[-0.0096, 0.023]
AILE	Only 8 combination operators can be concerned Remove OHWR	ns of dim6 onstrained. \mathcal{O}_{HD}	I operator at a time

Jorge de Blas INFN - Sezione di Roma

Dimension six SMEFT: Present

\frown		95% prob. bound on $rac{C_i}{\Lambda^2} \; [{ m TeV}^-2]$	SUC	95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV ⁻ 2]
me	Operator		atic	
le ti	$\mathcal{O}_{Hl}^{(1)} = (H^\dagger i D_\mu H) \left(\overline{l_L} \gamma^\mu l_L ight)$	$\left[-0.013, 0.038 ight]$	rrel	[-0.005,0.012]
sam	$\mathcal{O}_{Hl}^{(3)}~~(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}H)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L} ight)$	$\left[-0.065, 0.010 ight]$	00	[-0.011, 0.005]
Je	$\mathcal{O}_{He} ~~ (H^\dagger i \dot{D}_\mu H) \left(\overline{e_R} \gamma^\mu e_R ight)$	$\left[-0.026, 0.015 ight]$	%0	[-0.015,0.007]
t t	$\mathcal{O}_{Hq}^{(1)} ~~ (H^\dagger i \widecheck{D}_\mu H) \left(\overline{q_L} \gamma^\mu q_L ight)$	$\left[-0.108, 0.077 ight]$	0-5	[-0.027,0.043]
or a	${\cal O}_{Hq}^{(3)} (H^\dagger i {\stackrel{\leftrightarrow}{D}}{}^a_\mu H) (\overline{q_L} \gamma^\mu \sigma_a q_L) .$	$\left[-0.190, 0.005 ight]$	~	[-0.011, 0.015]
rat	${\cal O}_{Hu} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) (\overline{u_R} \gamma^\mu u_R)$	$\left[-0.230, 0.440\right]$		[-0.071,0.081]
ope	$\mathcal{O}_{Hd} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-1.2, -0.140]		[-0.14,0.070]
≥	$\mathcal{O}_{ll} ~~ (ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$	[-0.090, 0.030]		[-0.0096,0.023]
AILE	Only 8 combination operators can be co Remove Output	ns of dim6 onstrained.		I operator at a time

Jorge de Blas INFN - Sezione di Roma

Dimension six SMEFT: Present

ע	Operator	95% prob. bound on $rac{C_i}{\Lambda^2} \; [{ m TeV^-2}]$		$95\% ~{ m prob.}~{ m bound}~{ m on}\ {C_i\over \Lambda^2}~[{ m TeV}^-2]$
$\mathcal{O}_{Hl}^{(1)}$ (1) $\mathcal{O}_{Hl}^{(3)}$ (H) $\mathcal{O}_{Hl}^{(3)}$ (H) $\mathcal{O}_{Hq}^{(1)}$ (H) $\mathcal{O}_{Hq}^{(3)}$ (H) \mathcal{O}_{Hq} (H) \mathcal{O}_{Hu} (H)	Operator $H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{l_{L}}\gamma^{\mu}l_{L})$ $T^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{a}H)(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L})$ $H^{\dagger}iD_{\mu}H)(\overline{e_{R}}\gamma^{\mu}e_{R})$ $H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{q_{L}}\gamma^{\mu}q_{L})$ $T^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L})$ $H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{u_{R}}\gamma^{\mu}u_{R})$ $H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{u_{R}}\gamma^{\mu}u_{R})$	$\begin{bmatrix} -0.013, 0.038 \\ [-0.065, 0.010] \\ [-0.026, 0.015] \\ [-0.108, 0.077] \\ [-0.190, 0.005] \\ [-0.230, 0.440] \\ [-1.2, -0.140] \end{bmatrix}$	0-90% correlations	[-0.005, 0.012] [-0.011, 0.005] [-0.015, 0.007] [-0.027, 0.043] [-0.011, 0.015] [-0.071, 0.081]
\mathcal{O}_{Hd} (1)	$(ar{l}\gamma_{\mu}l)(ar{l}\gamma^{\mu}l)$	[-1.2, -0.140] [-0.090, 0.030]	~8	[-0.14, 0.070] [-0.0096, 0.023]
O op	nly 8 combination erators can be co Remove \mathcal{O}_{HWB}	is of dim6 nstrained. \mathcal{O}_{HD} .		

JORGE DE BLAS

<

Dimension six SMEFT: Present

		95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV ⁻ 2]		95% prob. bound on $\frac{C_i}{\Lambda^2}$ [TeV ⁻ 2]
lle	Operator	2 4		
	$\mathcal{O}_{Hl}^{(1)} = (H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H) \left(\overline{l_L} \gamma^{\mu} l_L ight)$	$\left[-0.013, 0.038\right]$		[-0.005,0.012]
IIPS	$\mathcal{O}_{Hl}^{(3)}~~(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}H)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L} ight)$	$\left[-0.065, 0.010\right]$		[-0.011,0.005]
ם	${\cal O}_{He} ~~ (H^\dagger i \dot{D}_\mu H) \left(\overline{e_R} \gamma^\mu e_R ight)$	$\left[-0.026, 0.015\right]$	suc	[-0.015,0.007]
	$\mathcal{O}_{Hq}^{(1)} ~~ (H^\dagger i \widetilde{D}_\mu H) \left(\overline{q_L} \gamma^\mu q_L ight)$	$\left[-0.108, 0.077 ight]$	latio	[-0.027,0.043]
OL 4	${\cal O}_{Hq}^{(3)} (H^\dagger i {\stackrel{\leftrightarrow}{D}}{}^a_\mu H) (\overline{q_L} \gamma^\mu \sigma_a q_L)$	[-0.190, 0.005]	Irrel	[-0.011,0.015]
Lan	${\cal O}_{Hu} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{u_R} \gamma^\mu u_R ight)$	[-0.230, 0.440]	O U	[-0.071,0.081]
ohe	${\cal O}_{Hd} ~~ (H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-1.2, -0.140]	80%	[-0.14,0.070]
>	$\mathcal{O}_{ll} ~~ (ar{l}\gamma_\mu l)(ar{l}\gamma^\mu l)$	[-0.090, 0.030]	-0	[-0.0096, 0.023]
	Only 8 combination operators can be concerned \mathcal{O}_{HWB} ,	is of dim6 instrained. \mathcal{O}_{HD} .	l	I operator at a time

Jorge de Blas INFN - Sezione di Roma

Dimension six SMEFT: Present vs. Future

		95% present be	ound on	95% projected b	ound on
		$rac{C_i}{\Lambda^2} \; [{ m TeV^-2}]$	$\Lambda ~[{ m TeV}]$	$rac{C_i}{\Lambda^2} \; [{ m TeV^-2}]$	$\Lambda ~[{ m TeV}]$
	Operator		$C_i = \pm 1$		$C_i = \pm 1$
\mathcal{O}_{HWB}	$\left(H^{\dagger}\sigma_{a}H ight)W^{a}_{\mu u}B^{\mu u}$	[-0.009, 0.003]	12	$\left[-0.0001, 0.0001 ight]$	93
\mathcal{O}_{HD}	$\left H^{\dagger} D_{\mu} H ight ^2$	[-0.027,0.004]	6.6	$\left[-0.0005, 0.0005 ight]$	45
$\mathcal{O}_{Hl}^{(1)}$	$(H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\mu} H) \left(\overline{l_L} \gamma^\mu l_L ight)$	[-0.005,0.012]	9.9	$\left[-0.0003, 0.0003 ight]$	56
${\cal O}_{Hl}^{(3)}$	$(H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{l_L} \gamma^\mu \sigma_a l_L ight)$	[-0.011,0.005]	10	$\left[-0.0002, 0.0002 ight]$	70
\mathcal{O}_{He}	$(H^\dagger i \dot{D}_\mu H) (\overline{e_R} \gamma^\mu e_R)$	[-0.015,0.007]	8.6	$\left[-0.0003, 0.0003 ight]$	58
$\mathcal{O}_{Hq}^{(1)}$	$(H^\dagger i \stackrel{\leftrightarrow}{D}_{\!\mu} H) (\overline{q_L} \gamma^\mu q_L)$	[-0.027,0.043]	5.3	$\left[-0.0018, 0.0018 ight]$	24
${\cal O}_{Hq}^{(3)}$	$(H^\dagger i \overleftrightarrow{D}^a_\mu H) \left(\overline{q_L} \gamma^\mu \sigma_a q_L ight)$	[-0.011,0.015]	9.1	$\left[-0.0005, 0.0005 ight]$	44
\mathcal{O}_{Hu}	$(H^\dagger i \overleftrightarrow{D}_{\!\mu} H) (\overline{u_R} \gamma^\mu u_R)$	[-0.071,0.081]	3.7	$\left[-0.0035,0.0035 ight]$	17
\mathcal{O}_{Hd}	$(H^\dagger i \overleftrightarrow{D}_\mu H) \left(\overline{d_R} \gamma^\mu d_R ight)$	[-0.14,0.070]	2.9	[-0.0046, 0.0046]	15
\mathcal{O}_{ll}	$(ar{l}\gamma_{\mu}l)(ar{l}\gamma^{\mu}l)$	[-0.0096, 0.023]	7.3	[-0.0003, 0.0003]	61
	$egin{aligned} \mathcal{O}_{HWB} \ \mathcal{O}_{HD} \ \mathcal{O}_{Hl} \ \mathcal{O}_{Hl} \ \mathcal{O}_{Hl} \ \mathcal{O}_{Hl} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hq} \ \mathcal{O}_{Hd} \ $	$\begin{array}{c c} & \text{Operator} \\ \hline \mathcal{O}_{HWB} & \left(H^{\dagger}\sigma_{a}H\right)W_{\mu\nu}^{a}B^{\mu\nu} \\ \mathcal{O}_{HD} & \left H^{\dagger}D_{\mu}H\right ^{2} \\ \hline \mathcal{O}_{Hl}^{(1)} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H\right)\left(\overline{l_{L}}\gamma^{\mu}l_{L}\right) \\ \mathcal{O}_{Hl}^{(3)} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{a}H\right)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L}\right) \\ \mathcal{O}_{He} & \left(H^{\dagger}iD_{\mu}H\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right) \\ \mathcal{O}_{He}^{(1)} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H\right)\left(\overline{q_{L}}\gamma^{\mu}q_{L}\right) \\ \mathcal{O}_{Hq}^{(3)} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H\right)\left(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L}\right) \\ \mathcal{O}_{Hu} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H\right)\left(\overline{u_{R}}\gamma^{\mu}u_{R}\right) \\ \mathcal{O}_{Hd} & \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H\right)\left(\overline{d_{R}}\gamma^{\mu}d_{R}\right) \\ \hline \mathcal{O}_{ll} & \left(\overline{l}\gamma_{\mu}l\right)(\overline{l}\gamma^{\mu}l) \end{array}$	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 95\% \text{ present bold} \\ \frac{C_i}{\Lambda^2} \left[\text{TeV}^- 2 \right] \end{array} \end{array} \\ \hline \\ \begin{array}{c} Operator \end{array} \end{array} \\ \hline \\ \begin{array}{c} \begin{array}{c} \mathcal{O}_{HWB} & \left(H^\dagger \sigma_a H \right) W^a_{\mu\nu} B^{\mu\nu} \\ \left[-0.009, \ 0.003 \right] \end{array} \\ \hline \\ \begin{array}{c} \mathcal{O}_{HD} & \left H^\dagger D_{\mu} H \right ^2 \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \left[-0.009, \ 0.003 \right] \\ \hline \\ \begin{array}{c} \mathcal{O}_{HD} & \left H^\dagger D_{\mu} H \right ^2 \end{array} \end{array} \end{array} \left[\begin{array}{c} \left[-0.027, \ 0.004 \right] \end{array} \\ \hline \\ \begin{array}{c} \begin{array}{c} \mathcal{O}_{Hl}^{(1)} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{l_L} \gamma^{\mu} l_L \right) \\ \mathcal{O}_{Hl}^{(3)} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{l_L} \gamma^{\mu} \sigma_a l_L \right) \\ \mathcal{O}_{He} & \left(H^\dagger i D_{\mu} H \right) \left(\overline{e_R} \gamma^{\mu} e_R \right) \end{array} \end{array} \left[\begin{array}{c} \left[-0.011, \ 0.005 \right] \\ \mathcal{O}_{He} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{q_L} \gamma^{\mu} q_L \right) \\ \mathcal{O}_{Hq}^{(3)} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{q_L} \gamma^{\mu} \sigma_a q_L \right) \end{array} \right] \end{array} \left[\begin{array}{c} \left[-0.011, \ 0.015 \right] \\ \mathcal{O}_{Hu} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{q_R} \gamma^{\mu} u_R \right) \end{array} \right] \\ \begin{array}{c} \left[\left0.071, \ 0.081 \right] \\ \mathcal{O}_{Hd} & \left(H^\dagger i \overset{\leftrightarrow}{D}_{\mu} H \right) \left(\overline{d_R} \gamma^{\mu} d_R \right) \end{array} \right] \\ \left[\begin{array}{c} \left[-0.0096, \ 0.023 \right] \end{array} \right] \end{array} \right]$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Preliminary

FCCee: NP scale >15-90 TeV ($C_i \sim 1$)

Dimension six SMEFT: Present vs. Future

CONCLUSIONS

- Current EWPD fit shows good agreement with the SM predictions
 ⇒ Bounds on the scale of NP ~ 3-15 TeV
- FCCee would strengthen greatly the constraining/discriminating power of the EWPD fit...
- ... but a significant improvement in theoretical calculations is required in order to bring the SM predictions down to the FCCee precision, and optimize NP searches.

\bigcap			Expected sensitivity	Improvement
FCCee projections	S	T, T, U	$\delta S,\; \delta T\sim 6\cdot 10^{-3},\;\;\; \delta U\sim 5\cdot 10^{-3}$	20x
		$\delta g^b_{L,R}$	$\delta g^b_L \sim 10^{-4}, ~~\delta g^b_R \sim 5\cdot 10^{-4}$	10 x
	δg_h	$_{\kappa_{VV}}\left(\kappa_{V} ight)$	$\delta\kappa_V\sim 0.001$	2 0x
		d=6 SMEFT	$\Lambda_{NP}\gtrsim 15-90~{ m TeV}$ (Ci~1)	$\sim 10 { m x}$