

European Circular The Collider Enerav-Frontier Study (EuroCirCol) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305. The information herein only reflects the views of its authors and the European Commission is not responsible for any use that may be made of the information.

Octopoles for Landau Damping

Vladimir Kornilov GSI Darmstadt, Germany

FCC-hh Task 2.4 O.Boine-Frankenheim, X.Buffat, U.Niedermayer, et.al.

1

Octupole Field

$$egin{array}{rcl} B_x &=& O_3(3x^2y-y^3)\ B_y &=& O_3(x^3-3xy^2) \end{array}$$

First-order frequency shift of the anharmonic oscillations

$$\ddot{x}+\omega_0^2 x=arepsilon x^3 \ \omegapprox\omega_0-rac{3}{8}rac{arepsilon A^2}{\omega_0}$$

Schematic yoke profile of an octupole magnet

G S

Octupoles in Ring Machines

Octupole Magnets Usage:

- Landau Damping
- Correction of O₃-field errors (much weaker)

But: non-linearities can reduce DA

Octupoles are the essential part of the beam stability in LHC, in combination with the feedback system

FS 55 1

Octupole Tune Shifts

Horizontal and vertical betatron tune shift ($\Delta Q=Q-Q_0$, $Q=f_\beta/f_0$) can be calculated using

$$egin{aligned} \Delta Q_x &= iggl\{ &rac{3}{8\pi}\sum \hat{eta}_x^2 rac{O_3 L_{
m m}}{B
ho} iggr\} J_x - iggl\{ &rac{3}{8\pi}\sum 2 \hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} iggr\} J_y \ \Delta Q_y &= iggl\{ &rac{3}{8\pi}\sum \hat{eta}_y^2 rac{O_3 L_{
m m}}{B
ho} iggr\} J_y - iggl\{ &rac{3}{8\pi}\sum 2 \hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} iggr\} J_x \end{aligned}$$

Betatron Action J_x , J_y Beta-function (The amplitude Courant-Snyder function)

$$egin{aligned} x(s) &= \sqrt{2J_x \hat{eta}_x(s)} \ \cos\left[\phi_x(s)
ight] \ y(s) &= \sqrt{2J_y \hat{eta}_y(s)} \ \cos\left[\phi_y(s)
ight] \ \left[egin{aligned} \Delta Q_x &= a_x J_x - b J_y \ \Delta Q_y &= a_y J_y - b J_x \end{aligned}$$

Vladimir Kornilov, FCC Week 2016, Rom, April 11-15, 2016

The LHC Configuration

392 Main Arc Quadrupoles (MQ)168 Landau Octupoles (MO):84 F-Octupoles, 84 D-Octupoles

$$O_3 = 63100 rac{I_{
m oct}[{
m A}]}{550} {
m Tm}^{-3}$$

 $L_{
m m} = 0.32 {
m m}$
 $I_{
m oct}^{
m max} = 550 {
m A}$

MO beta-function	MQ beta-function
$\beta_{x}^{F} = 30.1 \text{ m}$	$\beta_{x}^{F} = 29.8 \text{ m}$
β _y ^F = 178.8 m	$\beta_{y}^{F} = 180.2 \text{ m}$
$\beta_{x}^{D} = 175.5 \text{ m}$	$\beta_x^{D} = 176.9 \text{ m}$
β _y ^D = 33.6 m	$\beta_{y}^{D} = 33.3 \text{ m}$

LHC Landau Octupoles

Since the Landau Octupoles are close to the MQs, the beta-functions are very similar

FS SS

The FCC Configuration

814 Arc Quadrupoles (MQ) $L_{FCC}/L_{LHC} = 3.7$, but $N_{MQ}/N_{MQ} = 2.1$ (FCC $L_{cell} = 203m$, and LHC $L_{cell} = 106.9m$)

MQ LHC beta-function	MQ FCC beta-function
$\beta_{x}^{F} = 29.8 \text{ m}$	$\beta_x^{F} = 66.22 \text{ m}$
β _y ^F = 180.2 m	β _y ^F = 359.65 m
β _x ^D = 176.9 m	$\beta_x^{D} = 360.96 \text{ m}$
$\beta_{y}^{D} = 33.3 \text{ m}$	$\beta_{y}^{D} = 65.14 \text{ m}$

The FCC beta-functions are approx. twice of the LHC

We assume this scheme with the beta-functions at MQs

Ring Size Scaling

Coherent (real and imaginary) tune shift of the collective oscillations:

$$egin{aligned} \Delta Q_{
m coh} &=& rac{\lambda_0 r_p}{\gamma} rac{i eta Z_{
m eff}^\perp}{Z_0} \ \Delta Q_{
m coh} &\propto& rac{Z^\perp eta}{\gamma} \ \gamma & \ \end{array}$$
 The players:
 $egin{aligned} & ext{The players:} & & ext{impedance} \ & ext{impedance} & & ext{impedance} \ & ext{beta-function} \ & ext{impedance} & & ext{impedance} \end{aligned}$

Compare the LHC top energy with the FCC top energy for the same impedance per length:

$$egin{array}{lll} rac{\Delta Q_{
m coh}^{
m FCC}}{\Delta Q_{
m coh}^{
m LHC}} &=& rac{L_{
m FCC}}{L_{
m LHC}} imes rac{\hateta_{
m FCC}}{\hateta_{
m LHC}} imes \left(rac{\gamma_{
m FCC}}{\gamma_{
m LHC}}
ight)^{-1} pprox \ pprox & 3.7 imes 2 imes \left(rac{50}{7}
ight)^{-1} \left(= 1
ight) \end{array}$$

Ring Size Scaling

The tune shifts due to octupole magnets:

$$\Delta Q_{
m oct} \propto (NI)_{
m oct} \hat{eta}^2 \frac{\epsilon_{\perp}}{\gamma^2}$$

 $(NI)_{
m oct} \propto \frac{\gamma^2}{\hat{eta}^2 \epsilon_{\perp}} \Delta Q_{
m oct}$

The players:
• beam energy
• beta-function
• transverse emittance

Compare the LHC top energy with the FCC top energy. The octupole power (number × current) needed to compensate a coherent mode:

$$\frac{(NI)_{\text{oct}}^{\text{FCC}}}{(NI)_{\text{oct}}^{\text{LHC}}} = \left(\frac{\gamma_{\text{FCC}}}{\gamma_{\text{LHC}}}\right)^2 \times \left(\frac{\hat{\beta}_{\text{FCC}}}{\hat{\beta}_{\text{LHC}}}\right)^{-2} \times \left(\frac{\epsilon_{\text{FCC}}}{\epsilon_{\text{LHC}}}\right)^{-1} \approx \\ \approx \left(\frac{50}{7}\right)^2 \times \frac{1}{4} \times \left(\frac{2.2}{3.75}\right)^{-1} = 21.7$$

G = = 1

Ring Size Scaling

In terms of the instability growth time:

$$egin{aligned} a(t) &= a_0 \; e^{t/ au} \ rac{1}{ au} &= \mathrm{Im}(\Delta Q_{\mathrm{coh}}) \; 2\pi f_0 \end{aligned}$$

The same ΔQ_{coh} causes a slower instability in sec in FCC.

$$rac{f_0^{
m FCC}}{f_0^{
m LHC}} = rac{L_{
m LHC}}{L_{
m FCC}} = rac{1}{3.73}$$

But, also a feedback system operates in kicks per turn (e.g. in LHC 2 μ rad/turn). Stability means Im(ΔQ_{coh})<0.

Thus we consider ΔQ_{coh} .

FCC Landau Octupole Scheme

$$\Delta Q_{
m coh} ~\propto~ rac{Z^{\perp} \hat{eta}}{\gamma} ~~ \Delta Q_{
m oct} ~\propto~ (NI)_{
m oct}~ \hat{eta}^2~ rac{\epsilon_{\perp}}{\gamma^2}$$

- The octupole requirements are more demanding at the top energy
- The expected ΔQ_{coh} in FCC may be similar to that in LHC
- The total octupole power in FCC should be ≈20 times stronger

Thus in our stability analysis we consider the FCC top energy 50 TeV, and we vary the number of octupole magnets

Landau octupole at each arc quadrupole: $N_{MO} = N_{MQ} = 814$ 407 F-Octupoles, 407 D-Octupoles FCC/LHC: $N_{MO}/N_{MO} = 814/168 = 4.8$

FCC Relevant Parameters

Circumference	100 km
Beam kinetic energy	Injection 3.3 TeV Collisions 50 TeV
rms Bunch Length	80 mm
rms normalized transverse emittance	2.2 μm-rad
Particle Number	10600 bunches 10 ¹¹ ppb
Tunes	Q _x =107.32 Q _y =108.31

D.Schulte, FCC Week 2015, FCC Week 2016 M.Schaumann, PRSTAB **18**, 091002 (2015)

Dispersion Relation

L.Laslett, V.Neil, A.Sessler, 1965 D.Möhl, H.Schönauer, 1974 J.Berg, F.Ruggiero, CERN SL-96-71 AP 1996

$$\begin{split} \Delta Q_{\rm coh} \int \frac{1}{\Delta Q_{\rm oct} - \Omega/\omega_0} J_x \frac{\partial \psi_\perp}{\partial J_x} dJ_x dJ_y &= 1 \\ \\ \text{complex coherent tune shift for the beam without damping} & \text{The solution: collective mode frequency } \Omega \\ \\ \text{for the given impedance and beam} \end{split}$$

The resulting damping is a complicated 2D convolution of the distribution $\{d\psi/dJ_x, \psi(J_y)\}$ and tune shifts $\Delta Q_{oct}(J_x, J_y)$

G S

Stability Diagram

Figure from X.Buffat, et.el, PRSTAB 17, 111002 (2014)

My calculations

LHC nominal beam parameters at 7 TeV, maximum octupole magnet current

The general tune shifts due to octupoles:

$$egin{aligned} \Delta Q_x &= iggl\{ &rac{3}{8\pi}\sum \hat{eta}_x^2 rac{O_3 L_{
m m}}{B
ho} iggr\} J_x - iggl\{ &rac{3}{8\pi}\sum 2\hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} iggr\} J_y \ \Delta Q_y &= iggl\{ &rac{3}{8\pi}\sum \hat{eta}_y^2 rac{O_3 L_{
m m}}{B
ho} iggr\} J_y - iggl\{ &rac{3}{8\pi}\sum 2\hat{eta}_x \hat{eta}_y rac{O_3 L_{
m m}}{B
ho} iggr\} J_x \end{aligned}$$

The scheme with the F-Octupoles and D-Octupoles:

$$egin{array}{rcl} \Delta Q_x &=& (lpha_x^F I_{ ext{oct}}^F + lpha_x^D I_{ ext{oct}}^D) J_x - (lpha_{xy}^F I_{ ext{oct}}^F + lpha_{xy}^D I_{ ext{oct}}^D) J_y \ \Delta Q_y &=& (lpha_y^F I_{ ext{oct}}^F + lpha_y^D I_{ ext{oct}}^D) J_y - (lpha_{xy}^F I_{ ext{oct}}^F + lpha_{xy}^D I_{ ext{oct}}^D) J_x \end{array}$$

the α -coefficients depend on the beta-functions and on the magnet parameters.

Two knobs: I_{oct}^{F} , I_{oct}^{D} (not really F and D, just the beta functions)

Tune spread provides Landau damping

G S

Vladimir Kornilov, FCC Week 2016, Rom, April 11-15, 2016

Vladimir Kornilov, FCC Week 2016, Rom, April 11-15, 2016

FCC Landau Octupole Scheme

The estimation above for FCC- Δ Q was the Ring Size Scaling from LHC.

The FCC studies of X.Buffat, O.Boine-Frankenheim et.al.:

The instability rise time ≈ 100 turns at 3.3 TeV. This means Im(ΔQ) $\approx 0.1 \times 10^{-3}$ at 50 TeV (no collimators here, thus incomplete)

The TMCI Re(ΔQ) $\approx 10^{-3}$ at 3.3 TeV. This means Re(ΔQ) $\approx 0.06 \times 10^{-3}$ at 50 TeV.

Need to be further specified

Overview FCC Landau Octupoles

Blue: ΔQ_{coh} -Damping as in LHC. **3646** Octupoles.

Green: enough damping for the(•) studied impedances(no collimators). 1828 octupoles.

Black Dashed: $N_{MO} = N_{MQ} = 814$ (figures above)

Red: N_{MO} per length as in LHC. **627** octupoles.

LHC: 168 octupoles. LHC octupole magnets are assumed here.

Conclusions

- For the sufficient stability in FCC, much more octupoles than the LHC N_{MO} /length are needed.
- Different scenario for the combination of octupoles with the feedback systems are possible.
- The two-knobs (I_{oct}^F, I_{oct}^D) octupole scheme provides a good flexibility for x- and y- tune shifts and damping.
- Further detailed studies/simulations with impedances –octupoles–feedback are needed.