A-M Valente-Feliciano

SOTTO L'ALTO PATRONATO DEL PRESIDENTE DELLA REPUBBLICA UNDER THE HIGH PATRONAGE OF THE PRESIDENT OF THE ITALIAN REPUBLIC

Beyond bulk Nb

dimerter.

Thomas Jefferson National Accelerator Facility is managed by Jefferson Science Associates, LLC, for the U.S. Department of Energy's Office of Science

Acknowledgements

- G. Eremeev, O. Trofimova, J. Spradlin , C. Reece, L. Phillips T. Proslier
- S. Aull, H. Neupert
- T. Kubo
- V. Khouzenikov
- F. Stevie & Group
- J. Skusa

- R. Valizadeh
- A. Gurevich
- A. Sutter
- T. Junginger
- Prof. A. Lukaszew & Group

Beyond bulk Nb

Accessible almost only via film route: deposition, synthetization, diffusion

A-M Valente-Feliciano - FCC Week 2016, Roma - 04/12/2016

Nb Thin Films for SRF - State of the Art

A-M Valente-Feliciano - FCC Week 2016, Roma - 04/12/2016

Energetic Condensation

Condensing (film-forming) species : hyper-thermal & low energies (>10 eV).

Additional energy provided by fast particles arriving at a surface ⇒ number of surface & subsurface processes ⇒ changes in the film growth process:

- residual gases desorbed from the substrate surface
- chemical bonds may be broken and defects created thus affecting nucleation processes & film adhesion
- enhanced mobility of surface atoms
- stopping of arriving ions under the surface

Possibility of controlling the film properties

- Morphology & microstructure
- Stress
- Density of the film
- Film composition
- Crystal orientation may be controlled to give the possibility of low-temperature epitaxy

Energetic condensation with ECR

No working gas Ions produced in vacuum Singly charged ions 64eV Controllable deposition energy with Bias voltage Excellent bonding No macro particles Good conformality

Generation of plasma 3 essential components: Neutral Nb vapor, RF power (@ 2.45GHz), Static B \perp E_{RF} with ECR condition

Engineering for optimum RF performance

3 sequential phases for film growth

- Film nucleation on the substrate (Nb, Al₂O₃, Cu; single crystal, polycrystalline, amorphous)
- Growth of an appropriate template for subsequent deposition
- Deposition of the final surface optimized for minimum defect density.

ECR Nb films on ideal substrates

A-M Valente-Feliciano - FCC Week 2016, Roma - 04/12/2016

Nb on crystalline Cu substrate (360 °C) Continuous crystalline interface

Gap measurements performed by PCT (point contact tunneling spectroscopy- T. Proslier)

Superconducting gap (1.56-1.62meV) similar to bulk Nb ($\Delta_{Nb bulk}$ =1.55meV measured on the same setup) for hetero-epitaxial ECR Nb films on polycrystalline Cu.

T (K)

Jefferson Lab

Hetero-epitaxy, High T_{coating}

EELS plot for Cu/Nb signal across interface Interface thickness (e⁻¹ of highest density) Nb: 12.5 nm Cu: 20.1 nm

A-M Valente-Feliciano - TFSRF 2014 - 07/10/2014

Deposition on cavities

Conformality of the ECR process:

Film thickness along a 3GHz half-cell profile varies from 4μm (equator) to 6μm (iris) Note: very rough substrate , only grossly mechanically polished

HiPIMS cylindrical coating system for single cell commissioned

Beyond Nb: SIS Multilayers

1.0 NbN 0.8 Nb₃Sn $B(\mathbf{x})/B_0$ 0.6 0.4 0.2 **Region III Region I** Region II Vacuum S layer I layer **Bulk Nb** 0.0 100 50 70

x (nm)

Taking advantage of the high –T_c superconductors with much higher H_c without being penalized by their lower H_{c1}...

Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006) Alex Gurevich, AIP ADVANCES 5, 017112 (2015) T. Kubo, Applied Physics Letters 104, 032603 (2014)

Multilayer coating of SC cavities: alternating SC and insulating layers with d < λ

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

- Strong increase of H_{fp} in films allows using RF fields > H_c of Nb, but lower than those at which flux penetration in grain boundaries may become a problem=> no transition, no vortex in the layer
- □ High H_{fp} ,applied field is damped by each layer
- Insulating layer prevents Josephson coupling between layers
- Applied field, i.e. accelerating field can be increased without high field dissipation
- □ SC layers with higher T_c , Δ (Nb₃Sn, NbN, etc.) => Strong reduction of R_{BCS} (ie high Q_0)

150 Possibility to move operation from 2K to 4.2K

dc-Magnetron Sputtering (reactive mode)

T/°C

1800

1600

1400

HiPIMS (Huettinger 2000 V, 3000 A)

Good quality standalone NbTiN deposited by reactive DC magnetron sputtering.

Bulk (2 μ m) NbTiN films with a T_c =17.3 K and H_{c1} =30 mT.

Cubic δ -phase and T_c > 16 K for thicknesses > 30-50 nm and coating temperatures of 450 °C or higher.

□ AIN dielectric films with good dielectric properties - n in the range of 1.98-2.15.

A-M Valente-Feliciano - SRF 2015 Whistler, BC - 09/15/2015

Jefferson Lab

(real)

ECR Nb films

NbTiN/AIN Films (SI) – Flux penetration

RF characterization of NbTiN/AlN/Nb structures

SIS structures coated on ECR Nb/Cu film: 24h-bake, coating and annealing for 4 h at 450°C.

NbTiN based SIS Optimization

□ Thickness series to **determine/verify optimum layer thicknesses** with H_{fp} measurements

Implementing energetic condensation via HiPIMS (High power impulse magnetron sputtering) to lower the coating temperature while maintaining a good quality δ-phase for NbTiN.

HiPIMS NbTiN films with reasonable results ($T_c \simeq 16.5-16.9$ K).

T. Kubo, SRF 2015

Jefferson Lab

❑ RF measurement for SIS NbTiN/AIN structures on previously characterized bulk Nb QPR samples.

Conclusions

Nb films deposited by energetic condensation (ECR)

- Know how to coat high quality Nb films and tune properties: crystallinity, impurity content, RRR, superconducting gap
- ✓ RF characterization (QPR) of Nb/Cu surfaces deposited with various energetic condensation techniques – under way
- Tailor the interface to optimize structure & manage thermal impedance @ interface for maximum SRF performance (ion stitching, interlayer...)
- ✓ 3rd phase coating to study effect of top SRF surface doping/alloying
- Coating on 3 GHz and 1.5 GHz cavities

NbTiN based SIS structures

- Good quality standalone NbTiN & AlN layers \checkmark
- ✓ SIS NbTiN/AIN layers with a $T_{c, NbTiN}$ between 16.6 and 16.9 K.
 - Growth conditions for SIS structures need to be a compromise between optimum conditions for standalone films and minimizing interaction between layers.
 - H_{fp} enhancement (SQUID magnetometry) observed for 150 nm NbTiN films. Further studies under way to determine /verify optimum layer thickness.
- **RF** characterization of NbTiN/AIN structures coated on Nb surfaces reveal a promise of delaying flux penetration and lower RF losses for SIS coated Nb surfaces, both bulk and thick film.

Tailored Nb films via energetic condensation

Tune thin film structure and quality with ion
energy and substrate temperature on a
variety of substrates (amorphous,
polycrystalline and single crystal)

- Achieve film structures and properties only achievable at higher temperature with classic coating methods
- □ Tune RRR values from single digits to bulk Nb values →No intrinsic limitations
- Lower impurity (H) content than bulk Nb
- Good adhesion to the substrate (delamination threshold determined as function of ion energy and temperature)
- Grain boundaries not necessarily detrimental (if dense) to R_s
- Tailoring interface with high energy and subsequent growth at energy minimizing defect creation can contribute to lower R_s

		Substrate	RRR _{max}
		a-Al ₂ O ₃	488
		r-Al ₂ O ₃	725
	Single crystal	c-Al ₂ O ₃	247
		MgO (100)	188
ating		MgO (110)	424
Isula		MgO (111)	270
1	Polycrystalline amorphous	Al ₂ O ₃ ceramic	135
		AIN ceramic	110
		Fused Silica	84
	tal	Cu (100)	181
<u></u>	de crys	Cu (110)	275
etalli	Sing	Cu (111)	245
Ĕ	talline	Cu fine grains	193
	Polycryst	Cu large grains	305

AIN Films

Structure

AlN films were coated by reactive sputtering with different parameters. They were found to become fully transparent for N_2 /Ar ratios of ~33%.

Good quality AIN are readily produced at 600 and 450°C by dc-reactive magnetron sputtering.

The films exhibit the cubic structure (single crystal) at 600 $^{\circ}\mathrm{C}$ and the hexagonal structure (polycrystalline) at 450 $^{\circ}\mathrm{C}$.

At 450 °C, 30 nm AIN films exhibit dielectric properties of polycrystalline AIN films **n in the range of 1.98- 2.15**

Secondary Electron Yield of NbTiN Films

