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Beyond bulk Nb

high i film
on Cu, Al

Thick film SIS structures

Nb;Sn on Nb
(bulk, thick film)
substrate

Nb, Cu
Minimize Rres, maximize Q

Potential major system simplifications

Highest level of quality assurance and
reliable performance.

Use of substrates with higher thermal
conductivity (Cu, Al)

Delay vortex entry in multilayer structures

| . - o . o cee |
| Accessible almost only via film route: deposition, synthetization, diffusion |
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Nb Thin Films for SRF - State of the Art

1.5 GHz Nb/Cu cavities, sputtered w/ Kr @ 1.7 K (Q,=295/R,)

N-doped bulk Nb

_ field BUT strong Q-slope

it"’°0 ®0coes

: LY . bulkNb
] C. Benvenuti et al., " cﬁw

Physica C, Vol 351(4), April 2001, pp. 421-428 \\_/
L] 1] 2 I L) 1 X I y 1
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E,.. [MV/m]

Equi-axed grains,
size ~ 1-5um
In plane diffraction
pattern: zone axis
[110]
Heteroepitaxy
Nb (110) //Cu(010)

Columnar grains,
size ~ 100 nm
In plane diffraction
pattern: powder

diagram //C ’(lNlbl)(]N]l?)ﬂOO)
(110) fiber texture 1 u//Cu(’l 10)

substrate plane

Courtesy: P. Jacob - EMPA
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Energeﬁc Condensation

Condensing (film
Generalized Siruciure Zone Diagram

zone 3

columnar grains

A. Anders, Thin Solid Films 518 (2010) 4087

zone 2
zone T

At

region not
accessible

vy

0.1

~

porous,

tapered crystallites

separated by voids,
tensile stress

densly packed 1
fibrous grains

transition from tensile (low £*) to
compressive stress (high E£*)

region of possible
low-temperture
low-energy ion-assisted
epitaxial growth

region not
accessible
dense film,

derived from Thornton’s diagram for sputtering (1974)

Possibility of controlling the film properties

Uo000

recrystallized grain structure

cutout to show structure

fine-grained,
nanocrystalline,

with preferred  SUrface processes

line separating [}
net deposition
E* and net etching

rming) species : hyper-thermal & low energies (>10 eV).

Additional energy provided by
fast particles arriving at a surface
= number of surface & sub-

orientation

=>changes in the film growth
process:

O residual gases desorbed from the
substrate surface

chemical bonds may be broken and
defects created thus affecting nucleation
processes & film adhesion

enhanced mobility of surface atoms
stopping of arriving ions under the

surface

Q

Q

reduction of deposition by sputtering

Morphology & microstructure

Stress

Density of the film

Film composition

Crystal orientation may be controlled to give the
possibility of low-temperature epitaxy
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Energetlc condensation with ECR

COPPER TUBING THICKNESS

AS MAGNETIC COIL—, /F MONITOR PORT

No working gas

I 11

5] ",'."'."'."" W
11 Pl i
/

—
T~
~
—
DNV NN

lons produced in vacuum
- Singly charged ions 64eV

BIASED
SUBSTRATE

‘ . NSuLATOR ’ Controllable deposition energy

with Bias voltage

HOLDER

/w\‘““n—uoaluuFLuxPLqu Excellent bonding

No macro particles

NIOBIUM TARGET
IN E-BEAM GUN HEARTH

Good conformality

Generation of plasma 3 essential components:
Neutral Nb vapor, RF power (@ 2.45GHz), Static B L E;; with ECR condition

Engineering for optimum RF performance

Subsequent growth
Nb homo-epitaxy

3 sequential phases for film growth

A Film nucleation on the substrate (Nb, Al,O,, Cu;
single crystal, polycrystalline, amorphous)

O  Growth of an appropriate template for
subsequent deposition

(J Deposition of the final surface optimized for

minimum defect density.

Jefferson Lab



ECR Nb films on ideal substrates

Crystalline Al,O, (11-20) substrate [ Heteroepitaxy with continuously crystalline interface

10.0 ECR Nb/a-AlL,O,
100.0 nm 1E+24 - — 1E+07
Z -+ 1E+06
E, PRSP e .
E 1E+21 ; 16
% 1E+20 e 1E+04
o §® 1E+19 + 1E+03
50.0 nm s
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= 1E+17
S 1E+16 VB0
1E+15 --4—~—----—L‘-—J~-4A—--u 1E+00
5.0 00 10 20
0.0 nm Depth (zzm)
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—O3ND14N
Bulk Nb Standard

1E+24 -
1E+23 1
1E+22 -
TE+21 =
1E+20 -\
1E+19
1E+18
1E+17
1E+16

dual energy and thick films (interrupted growth) i

AIO (11- 20) > e
substrate

Concentration (atom/cm?)

Bake @ 500 °C, coating @ 360 °C Depth Gam)
- , _.—(1-1_20) \ % Nb/ o-Al O (11 20) Nb/ (1-).6‘|ZO3 (1_120)

b —u—(11-20)
860 , —=— (0001 "o %
( ) 0.04 on!no .4...—..0—.—.—0—.——0—1
550 - —m— ceramic ’g‘ 7 o’
L —
500 y = K .'. ' . g
450 = s » %
400 - /' = i
g 350 \ _\ P < o 890K -

300 ] B -5.0x10° \k ' % * 8.00

250 \ ./' & / ./ ° igg
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T v T v v T T T g T " X Axis Title H (Oe)
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Bias init[V]

RRR =489 RRR =725

Nb (100)/(1-120) Al,O, always higher RRR Hg, =175 mT (~H )

and bulk-like T than Nb (110) &(111) Hi, = 155 mT
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ECR Nb films on Cu substrate

Structure, interface and superconducting ga

Nb on crystallme Cu substrate (360 C) Contlnuous crystallme interface
B [ AN mee NIV A=1.56 meV

A(0) = 1.56 meV
T.=9.25K

2AKKT =3.98
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+ ‘ﬁft,; BLPL) By ' Crenie & Sen S 0 1 2 3 4 5 6 7 8 9 10

T (K
Gap measurements performed by PCT (point contact tunneling spectroscopy- T. Proslier) 0

Superconducting gap (1.56-1.62meV) similar to bulk Nb (A, ,,« =1.55meV measured on the same setup)
for hetero-epitaxial ECR Nb films on polycrystalline Cu.
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1;oaﬁng

T ke = 500 °C
T coating =360 °C 1o
* Enp ions = 184 €V/64 eV
& Thickness =4.5pum
- RRR =305

' T.=9.37+0.12 K
A=1.53 meV

A [me

count (arb. unit}

-8 0 8 16 24 32
Distance (nm)

EELS plot for Cu/Nb signal across interface
Interface thickness (e of highest density)
Nb: 12.5 nm
Cu: 20.1 nm

Jefferson Lab



ECR Nb/Cu- Surface resistance

Hetero-epitaxial film Nb on OFHC Cu, 360 °C bake & coating

184 eV for nucleation/early growth + 64 eV for subsequent growth
T=9.36 + 0.12 K

RRR =179 (Nb/a-Al,O, (11-20), witness sample)
= EBSD IPF map and XRD pole figure show very good crystallinity and

o ECR Nb/ large grain Cu
% (influence of grain boundaries and Cu substrate strain)
S 150 | In queue for RF measurement in QPR cavity
i
$ ECR Nb/Cu
o . (RRR 67) | E
o 100 | = 1 -0.004 |- -
b ] ® (] 1 ]
© gl | ® ® — SR=20els
= P T 0.005 |- = =
‘?) 09 aspe000 0 @ e < & \ ) i —— SR=200 Oe/s ]
‘ ‘ ‘ r “‘ ..............
& T T bulkNb | °%°F 0 Tyt
(RRR 47) 0 1000 2000 3000 4000 5000 6000
S. Aull, CERN B (Oe)
o L

0 10 20 30 40 50
Bpeak [MT] Jefferson Lab



Deposition on cavities

Conformality of the ECR process:

Film thickness along a 3GHz half-cell profile varies from
4um (equator) to 6um (iris)

Note: very rough substrate , only grossly mechanically

polished

\

i)

!
3 1
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Beyond Nb: SIS Multilayers

Higher-T.SC: NbN, Nb,Sn, etc Taking advantage of the high —T_ superconductors with much
> K higher H_ without being penalized by their lower H ;...

' Alex Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
0.6 I
04 d E

Alex Gurevich, AIP ADVANCES 5, 017112 (2015)
0.2}

T. Kubo, Applied Physics Letters 104, 032603 (2014)

Multilayer coating of SC cavities:
alternating SC and insulating layers with d < A

h(x)/H

Higher T_ thin layers provide magnetic screening of the Nb
SC cavity (bulk or thick film) without vortex penetration

Insulating layers O Strong increase of Hy, in films allows using RF fields >
S H. of Nb, but lower than those at which flux

o penetration in grain boundaries may become a
asl problem=> no transition, no vortex in the layer
| O High Hy, ,applied field is damped by each layer
5? 0.6{ O Insulating layer prevents Josephson coupling between
¥ layers
a 04 O Applied field, i.e. accelerating field can be increased
| without high field dissipation
e _— Region]  Regionll  Region Il X O SClayers with higher T, A (Nb;Sn, NbN, etc.) => Strong
il | S layer »Ila.er Bulk If'b | reduction of Ry (ie high Q)
0 50 70 100 150 Possibility to move operation from 2K to 4.2K

x (nm)
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APPROACH

Superconductor Insulator: AIN
Ternary Nitride (Nb,_,Ti )N
T.=17.3K, a= 4.341 A for 8-phase
Presence of Ti found to reduce
significantly the resistivity

More metallic nature and better surface
properties than NbN
should result in better RF performance W Grown with a wurtzite (hcp, a=3.11A, c=4.98A) or
sphalerite (B1 cubic, a= 4.08 A) structure.
i - L Found to enhance the properties (T.) for very thin
[ NN = T~ 15K NbN and NbTiN films .
O Large thermal conductivity (3.19W/cm.K at 300K,
comparable with Cu, 4.01W/cm.K)

CHALLENGES

Develop good quality and uniform thin layers

MgO (ideal)
Base press : 1010 T, [
pressure range | orr | Substrates: AIN ceramic (worst case)
O dc-Magnetron Sputtering (reactive mode) Bulk Nb (real)
O HiPIMS (Huettinger 2000 V, 3000 A) ECR Nb films

U Good quality standalone NbTiN deposited by reactive DC magnetron sputtering.

Bulk (2um) NbTiN films with a T_=17.3 Kand H_, =30 mT.

Cubic 6-phase and T_> 16 K for thicknesses > 30-50 nm and coating temperatures of 450 "C or higher.
O AIN dielectric films with good dielectric properties - n in the range of 1.98- 2.15.

Jefferson Lab



NbTiN/AIN Films (SI) — Flux penetration

NbTINJAINIMgO (100) NbTiNAIN/AN ceramic

SQUID Magnetometry

NbTiN/MgO
(Prof. A. Lukaszew group, College William & Mary )
SUPERCONDUCTING il
WIRE
1.5cm - )
: Rms=0.396 nrﬁ Rms=13.}i§;1.pm
» a=43455A S a=4.3584 A
oam | s i
“15em | 4 MAGNETIE FIELD N aad
0.0 ] ”
= 000"
% -4.0x10°
£ -6.0x10°
-8.0x10™

Thickness H,
[nm] [mT]

NbTiN/MgO 2000 17.3 7
NbTiN/AIN/AIN ceramic 145 135 14.8 e w 0 .
NbTiN/AIN/MgO 148 200 16.7 Film Thickness (nm)
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RF characterization of NbTiN/AIN/Nb structures
SIS structures coated on ECR Nb/Cu film: 24h-bake, coating and annealing for 4 h at 450°C.

AIN NbTiN RF Measurement in 7.5 GHz sapphire-loaded TE,,, cavity
“N/Ar 0.33 0.23 10000 - L |
Total pressure [Torr] 2x10°3 2x103 ] .l..l-....
Sputtering Power [W] 100 300 u /
Deposition rate [nm/min] ~25 ~18 iz !//E/!
Thickness [nm] 20 150 1000 B o fi
Te [K] N/A ] ] /"/:,--\.
- "N % G . gu® -
___Sharp interfaces = L
o o 100 - B
o ] -
NbTiN P
10 5 - —m— Single crystal bulk Nb
] ' —m— ECR (244 eV) Nb/Cu
—m— NbTiN/AIN/ECR(244 eV) Nb/Cu
—u— NDbTiN/AIN/Nb
1 | ! | ' | ! | ! | ! |
2 4 6 8 10 12
TEM cross-section (FIB cut) of
NbTiN/AIN/Nb/Cu structure T K]
Lower BCS resistance beyond 4 K for SIS coated surfaces compared to standalone ECR film
& bulk SC Nb.

Jefferson Lab



NbTiN based SIS Optimization

O Thickness series to determine/verify optimum awerw . f—a.
layer thicknesses with H¢, measurements

150

O Implementing energetic condensation via
HiPIMS (High power impulse magnetron
sputtering) to lower the coating temperature
while maintaining a good quality 6-phase for
NbTiN. o w w w w

HiPIMS NbTiN films with reasonable results (T, ~ 16.5-16.9 K). T Kubo. SRF 2015

100

er thicknessdg (nm)
S layer thicknessdg (nm)

S lay

O RF measurement for SIS
NbTiN/AIN  structures on
previously characterized bulk
Nb QPR samples.

SIS structure coating on Nb & Nb/Cu cavities concept

Jefferson Lab




Conclusions

1 Nb films deposited by energetic condensation (ECR)
v Know how to coat high quality Nb films and tune properties: crystallinity, impurity
content, RRR, superconducting gap

RF characterization (QPR) of Nb/Cu surfaces deposited with various energetic
condensation techniques — under way

Tailor the interface to optimize structure & manage thermal & P
impedance @ interface for maximum SRF performance (ion stitching, . \''s
interlayer...) %

3"d phase coating to study effect of top SRF surface doping/alloying
Coating on 3 GHz and 1.5 GHz cavities

O NbTiN based SIS structures
v Good quality standalone NbTiN & AIN layers
v" SIS NbTiN/AIN layers with a T_ \,mn between 16.6 and 16.9 K.

o Growth conditions for SIS structures need to be a compromise between optimum conditions for
standalone films and minimizing interaction between layers .

H;, enhancement (SQUID magnetometry) observed for 150 nm NDbTiN films. Further studies
under way to determine /verify optimum layer thickness.

RF characterization of NbTiN/AIN structures coated on Nb surfaces reveal a promise of
delaying flux penetration and lower RF losses for SIS coated Nb surfaces, both bulk and
thick film.

.!efferson Lab



Tailored Nb films via energetic condensation

A Tune thin film structure and quality with ion
energy and substrate temperature on a

Substrate RRR

max

variety of substrates (amorphous, 3-Al;0; 488
polycrystalline and single crystal) - r-Al,0; 725
Q Achieve film structures and properties only ’ c-AlLO; 247
achievable at higher temperature with o0 £ Me0 (100} 188
. . = MgO (110) 424
classic coating methods &
. . . > MgO (111) 270
O Tune RRR values from single digits to bulk Nb 2
values >No intrinsic limitations £g  AlLO; ceramic 135
= O

O Lower impurity (H) content than bulk Nb ‘%fg AIN ceramic 110

O Good adhesion to the substrate 5 o
. . . a Fused Silica 84
(delamination threshold determined as o1

. . _ Cu (100

function of ion energy and temperature) g (100)
0 Grain boundaries not necessarily detrimental § o a, Cu (110) 275
(if dense) to R, s 7 Cu (111) 245
O Tailoring interface with high energy and = £ Cu fine grains 193
subsequent growth at energy minimizing _Z Cu large grains 305

defect creation can contribute to lower R,

._lefferson Lab



AIN Films

AIN'MgO (100)

S 90000 a
! 2 _
R = 8
I
40000 — 0
20
=
10000 4 = a
~ «l
Z 2,
{1 = z
A N
e N i i i 2 T [ TR o e o 450 °C
4 50 60 70 80 90 100 110 .
2Theta-Omega (°)
Dielectric Behavior
W Roughness - EMA with 50% Void
et " (XRR thickness used)
AIN Film - Cauchy w/ Urbach Absorption
(XRR thickness used)
Mgo Substrate - Palik bulk optical

aa

constants; 0.5 mm

o g

At 450 °C, 30 nm AIN films exhibit dielectric
properties of polycrystalline AIN films

._lefferson Lab

n in the range of 1.98- 2.15

n (solid line)

Structure

Sample 74-1
Sample 74-2
——— Sample Epitaxial| ]

1.9 il i
] “'::::::::::::::::::::: ---- T—--?----:

1.8 =: LLTTCEE TP PP PP PP Ers n,;;\v:l._\fn'
400 800 1200 1600 2000

Wavelength (nm)

AIN films were coated by reactive sputtering with different
parameters. They were found to become fully transparent
for N,/Ar ratios of ~33%.
Good quality AIN are readily produced at 600 and
450°C by dc-reactive magnetron sputtering.
The films exhibit the cubic structure (single crystal) at
600 °C and the hexagonal structure (polycrystalline) at

,0.5

S o
w N

o
o
(au1l paysep) ¥

0.1



Secondary Electron Yield of NbTiN Films

3.0 ‘ ‘ '
—o— Nb (degreased) Measurements at
—&— Nb (sputtered) room temperature
5k | —&— Nb(Ti)N (degreased) | |
—— Nb(Ti)N (sputtered) Max. SEY =2.2 £+ 0.1

comparable to EP Nb
2.0} .
After sputtering away
~3nm,

SEY down to 1.15

SEY

1.5¢

1.0

)
0O 200 400 600 800 1000 1200 1400 1600 1800
Primary Energy [eV]

0.5
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