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Introduction: roles of collimation systems

• Halo cleaning versus quench limits (for SC machines)

• Passive machine protection
First line of defense in case of accidental failures

• Reduction of total doses on accelerator equipment
Provide local protection to equipment exposed to high doses 

• Cleaning of physics debris (collision products)
Avoid SC magnet quenches close to the high-luminosity experiments

• Concentration of losses/activation in controlled areas
Avoid many loss locations around the 100-km tunnel

• Optimize background in the experiments 
Minimize impact of halo losses on quality of experimental data
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Main role of collimation 
in hadron colliders 

before the LHC

Driving constraint 
for LHC and FCC-hh!

Our first goal: 
conceptual design that addresses the main cleaning challenge, taking into 
account impedance and machine protection aspects.  Allow first iterations on 
collimator design and materials.
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Collimation challenges for FCC
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LHC (Design) HL-LHC FCC-hh 
(Baseline)

Beam energy 7 TeV 7 TeV 50 TeV

Beam intensity 3 x 1014 6 x 1014 10 x 1014

Stored energy 360 MJ 690 MJ 8500 MJ

Power load 
( τ=0.2h) ~500 kW ~960 kW ~11800 kW

Energy density ~1 GJ/mm2 ~1.5 GJ/mm2 ~200 GJ/mm2
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( τ=0.2h) ~500 kW ~960 kW ~11800 kW

Energy density ~1 GJ/mm2 ~1.5 GJ/mm2 ~200 GJ/mm2

2 orders of magnitude 
above the LHC:

outstanding challenges for 
collimator materials

Factor 20 x LHC
Required cleaning efficiency 

at the LHC:
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Goals of FCC collimation studies (I)
• First baseline for a collimation system design 

• based on a scaled-up version of the present LHC system                                        
→ results should tell us how far we can go with current state-of the art

• very good performance of the present system so far (validated up to 6.5 TeV)

• feasible in short timescale and given available man-power

• List of alternative options and layouts for further studies 
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LHC collimator gaps @ 6.5 TeV
down to 2.2 mm in IR7 !

LHC collimation cleaning at 6.5 TeV in IR7 (betatron cleaning)
Performance limitation: losses in the dispersion suppressor after IR7

BLM signals 
normalized to BLMTCP
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Goals of FCC collimation studies (II)
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Organization:

• FCC collimation working group meetings once per month- interface between different teams to 
cover several aspects (optics, performance, energy deposition studies, hardware design, etc.) 

Detailed scope for first baseline:

• dedicated insertions for betatron and momentum cleaning

• IR collimation: incoming beam (“tertiary collimators”)

• IR collimation: physics debris cleaning

• define interfaces to other relevant systems (injection/dump)

Requirements to achieve first baseline:

• Define ring layout (FCC collimation WG + FCC dump WG)

• Calculation of FCC aperture and definition of baseline for collimator settings

• Validation of the cleaning performance with tracking simulations (complete loss maps)

• First evaluation on contribution to impedance

➡ All this will serve as input for the collimation hardware design 
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FCC Collimation:
our initial approach
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Betatron cleaning
• Present LHC collimation solution fully validated: natural and solid solution to start with!

• First conceptual solution for the betatron collimation at the FCC: 
scaled-up system derived from the present one

8
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Secondary collimators must be 
placed at optimum phase locations 

to catch secondary halo

see Phys. Rev. Spec. Top. Accel. Beams 1 (1998) 081001

• Standard optics for multi-stage cleaning

• Beta functions scaled to have similar collimator gaps as in the LHC 
    → push until later technological developments beyond present state-of-the-art

• Initially,  keep current collimation system layout (same number of collimators, positioned at same 
phase advance, based on C-reinforced-C material for primary and secondary stages) 

    → to be optimized later (more collimators for secondary and tertiary stages, new materials...)

Betatron cleaning
• Present LHC collimation solution fully validated: natural and solid solution to start with!

• First conceptual solution for the betatron collimation at the FCC: 
scaled-up system derived from the present one

8

https://cds.cern.ch/ejournals.py?publication=Phys.+Rev.+Spec.+Top.+Accel.+Beams&volume=1&year=1998&page=081001
https://cds.cern.ch/ejournals.py?publication=Phys.+Rev.+Spec.+Top.+Accel.+Beams&volume=1&year=1998&page=081001
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Optics and insertion lengths scaled up by a factor 5

• insertion length ~ 2.7 km
• collimator gaps (in mm): 0.84 x LHC gaps

LHC  IR7 - betatron cleaning FCC IRD - betatron cleaning
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Collimation in the IR
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Tertiary collimators (TCTs) provide local 
protection of the inner triplet

Implemented 2 TCTs (one horizontal, one vertical) 
in experimental insertions

TCTs
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Off-momentum cleaning (I)
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Main purpose
             ! Intercept primary off momentum losses
                  ! ! Capture losses, synchrotron radiation losses, …!
                  ! ! Important for failures: RF off, wrong frequency settings 
             ! Provide adequate cleaning for design loss scenarios

LHC solution
! Dedicated cleaning insertion
! Three stage cleaning
! ! (TCP/TCS/TCLA)
! Maximised normalized Dx
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Off-momentum cleaning (II)
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Specifications for FCC:
• Momentum cut at the TCP tighter than the arc acceptance:

➡ FCC arc acceptance ~ 0.71% → cut at the TCP ~0.12% 

• Beta functions such that collimation hierarchy in betatron cleaning insertions is not violated     
(ie. beyond TCPβ /TCSGβ  at 7.6/8.8 σ)

Start with LHC-scaled solution:

• Beta functions scaled by √(50/7)
• Dispersion like at the LHC

 Can achieve a momentum cut of 0.12% 
with

➡ half-gap ~ 2 mm

➡ Nσ (TCP) = 20

Ok for cleaning hierarchy!

Alternative optics also being investigated
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Off-momentum cleaning (II)
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Specifications for FCC:
• Momentum cut at the TCP tighter than the arc acceptance:

➡ FCC arc acceptance ~ 0.71% → cut at the TCP ~0.12% 

• Beta functions such that collimation hierarchy in betatron cleaning insertions is not violated     
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➡ Nσ (TCP) = 20

Ok for cleaning hierarchy!
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A. Chance, B. Dalena,  A. Faus-Golfe,  A. Lachaize, J. Molson
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Take advantage of the developments and experience built up for other projects (LHC, HiLumiLHC, 
EuCard). Several tools available for precise tracking simulations:

• Merlin: 6D tracking in thick lens + beam particle scattering     

• SixTrack: 6D tracking in thin lens + beam particle scattering

• SixTrack + Fluka: tracking engine of SixTrack + full MC functionalities of Fluka for beam machine 
interactions 

 We have defined a set of baseline inputs to be used across different groups: optics, layout, collimator 
settings, aperture model → benchmarking of codes and comparison between different tools to validate the 
results
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Tools for performance studies

used at LAL (see talk by J. Molson) 

used at CERN (see talk by M. Fiascaris) 

ongoing effort at CERN 

SixTrack SixTrack + Fluka
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Where we are
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FCC baseline layout
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Roadmap to first baseline
Roadmap to first baseline - work is progressing on several aspects:

• Lattice for collimation studies (with betatron and momentum cleaning 
insertions)

→ integrated lattice for baseline layout available

→ alternative layouts to be explored
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Roadmap to first baseline
Roadmap to first baseline - work is progressing on several aspects:

• Lattice for collimation studies (with betatron and momentum cleaning 
insertions)

→ integrated lattice for baseline layout available

→ alternative layouts to be explored

Experimental insertion

• Development of an aperture model for the full FCC ring

→ preliminary aperture model defined (see details in talk by J. Molson)

• Aperture calculations and definition of baseline collimator settings

→  first evaluation performed at injection and top energy (see talk by M. Fiascaris)

inputs from R. Martin
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• Optics for momentum cleaning 

→  first version available (see talk by J. Molson)

     Alternatives to be investigated (see talk by A. Lachaize)

• Design of dispersion suppressor regions including TCLD collimators 

→  first studies on performance with TCLD collimators (see talk by M. Fiascaris)

     Design of DS to be optimized - detailed energy deposition studies required

• Performance evaluation with full set of loss maps and optimization of collimation settings 

→ First loss maps (see talks by J. Molson and M. Fiascaris)

     Systematic studies for performance evaluation and optimization planned

     Need to converge soon on input for impedance evaluation and HW design

15

Roadmap to first baseline (II)
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Conclusions and Outlook
• Good progress was made in the last months to converge towards a first baseline:

• dedicated insertions for betatron and momentum cleaning

• IR collimation: incoming beam (“tertiary collimators”)

• IR collimation: physics debris cleaning

• define interfaces to other relevant systems (injection/dump)

• We have the tools in hand to evaluate and optimize the system performance

• We have completed a first iteration to define baseline collimator settings 

• Systematic studies of betatron and momentum cleaning, and benchmarking of codes are ongoing

• Interactions with other teams will be crucial for the next steps:

• Collimator settings: trade-off between impedance and efficiency of the system → iterations with 
impedance team, study of new materials 

• Collimator design specifications: to be defined once we have more detailed studies on energy deposition 

• Performance optimization: need iterations with optics team to add collimators in critical locations (like in 
the dispersion suppressor) and maximize their performance.

• Beyond the first baseline: advanced collimation concepts (crystal collimation, hollow e-lens)

• Profit of experience from LHC: MDs on crystal collimation in 2015 carried out with low intensity 
demonstrated proton channeling at 6.5 TeV and ion channeling at 450 GeV!

16

done

done
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EXTRAS
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Multistage betatron cleaning

18

Cold aperture

Circulating beam

Primary 
beam halo

Cleaning insertion

Bottle
neck

Arc(s) IP

Betatron cleaning: intercept primary losses with cleaning efficiency that 
ensures losses below quench limits in all operational loss scenarios. 

The available transverse aperture sets the scale.
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By design, aperture constraints usually are:
 injection ↦ arcs

 collisions ↦ inner triplet
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LHC collimation layout
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IR3: Momentum cleaning 
1 primary (H)
4 secondary (H)
4 shower absorber (H,V)

IR7: Betatron cleaning 
3 primary (H,V,S)
11 secondary (H,V,S)
5 shower absorber (H,V)

Local cleaning at triplets
8 tertiary (2 per IP)

Passive absorbers for warm 
magnets

Physics debris absorbers

Transfer lines
Injection and dump protection

> 100 movable 
collimators

Two jaws (4 motors) 
per collimator
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Advanced collimation concepts
Hollow e-lens

• Hollow electron beam parallel to the p-beam:

• Expect to be a key asset to control loss rates on 
collimators

• Working on a design for implementation in LHC 
in LS2. Decided to build test bench at CERN       
→ also crucial for FCC
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Crystal collimation
• Bent crystal can be used for channeling and 
extracting the beam halo in a controlled way

• can improve cleaning efficiency
• reduce impedance: less secondary collimators, 
larger gaps

• Low intensity beam tests at the LHC in 2015

• Promising for the FCC, but large uncertainties on 
extrapolations to high energies and several 
operational challenges.

• halo particles see field dependent on (Ax, 
Ay) plane, while core is unaffected

• adjusting e-beam parameters can be used 
as halo scraper
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Inputs to cleaning studies
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Crystal collimation at the LHC

22

MDs in 2015 carried out with low 
intensities demonstrated: 

proton channeling at 6.5TeV; 
Pb channeling at 450GeV.

Collimation tests at LHC: collaboration with 
UA9 team (W. Scandale) and EN-STI. 
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