

Magnet cost model and targets

D. Schoerling, CERN Maria Durante, Clement Lorin, CEA Teresa Martinez, Fernando Toral, CIEMAT April 14th, 2016

Status

- Goal: Provide preliminary estimates of the cost of the dipole magnets as a function of field and temperature based on cross-sections scaled from the EuroCirCol 16 T dipole design and from LHC magnet cost
- Reference parameters: 50 mm aperture, 4578 magnets, 14.3 m long, 16 T
- J_{cu} ≤ 1200 A/mm² (magnet protection at short sample) and Cu/Non-Cu ≥ 1:1(optimized strand production)

Target cost of magnet

- Cost of LHC dipole magnet taken as reference and target
- LHC dipole cost was around 1 MCHF/dipole, 2000 (around 660 kEUR/dipole, 2000)
- The conductor cost was around 200 kEUR/dipole, 2000
- Assuming 2% inflation over 16 years for the dipoles one finds 900 kEUR/dipole, 2015
- The cost of the LHC dipole without conductor is 630 kEUR/dipole, 2015
- Manufacturing process involves more steps due to heat treatment, different insulation technique, etc., but number of units is larger (detailed study started with CEA & CIEMAT).

Analytical model (CIEMAT)

Coils	-			Ē	
	r	n	П	I	C
	L	υ	L	L	э.

Conductor (Nb3Sn) Conductor insulation (material+braiding) End Spacers raw material machining insulation Wedges raw material machining insulation Interlayer insulation Ground insulation (polyimide) Winding Procedure Tooling Winding poles Winding Mandrel Clampings Infrastructure* Winding machine Curing Material (binder agent) Procedure Tooling Curing shell Infrastructure* **Curing Press**

Curing Furnace

Coile
Colls
Matarial (Ar)
Tooling
Reaction mould
Infrastructure*
Reaction furnace
Splicing procedure (current leads soldering)
Special tooling for transfer from reaction tooling to impregnation tooling
Impregnation
Material
Procedure
Tooling
Impregnation mould
Infrastructure*
Impregnation tank
Quench heaters (in case of using them)
Acceptance Tests
Electrical integrity to ground (spacers and poles)
Metrology of the finished coil (main dimensions)
Checking & Finishing
* Infrastructure will not be considered for the cost estimation

Structure support
Collar
Bladders
Aligment keys
Load Keys
Iron Pad
Masters
Yoke
raw material
machining
Shell
End plates
Axial rods

Cold Mass
He Vessel
Cryogenic lines
Bus Bars

Conductor J_c -fit

Fit for the target value of $J_c(4.2 \text{ K}, 16 \text{ T}) = 1500 \text{ A/mm}^2$

$$B_{c2}(T) = B_{c20} \cdot (1 - t^{1.52})$$
$$J_{c} = \frac{C(t)}{B_{p}} \cdot b^{0.5} \cdot (1 - b)^{2}$$
$$C(t) = C_{0} \cdot (1 - t^{1.52})^{\alpha} \cdot (1 - t^{2})^{\alpha}$$

— 1.9 К —— 4.2 К

Where: $t = \frac{T}{T_{c0}}$; $b = \frac{B_{p}}{B_{c2}(t)}$ with B_{p} peak field on the conductor $T_{c0} = 16$ K, $B_{c20} = 29.4$ T, $\alpha = 0.96$, $C_{0} = 270$ kA/mm² T. Cable degradation: 0%.

Conductor amount vs field @ 4.2 K

• Conductor amount is very sensitive to the operational field and margin!

Temperature 4.2 K

Conductor amount vs field @ 1.9 K

Conductor amount is sensitive to the operational field and margin!

Conductor mass in kt

Temperature 1.9 K

Elasticity of conductor mass (CEA)

- We can define a field elasticity as $E_{\rm m} = \frac{B}{m} \frac{dm}{dB}$
- An operational field of 14 T requires ~50% of the conductor required for 16 T

1% more field at 14 T cost 3.5% more mass of conductor, 1% more field at 16 T cost 7.5% more mass of conductor

Conductor composition

• 10% margin at 4.2 K and ~18% margin at 1.9 K are equivalent

Non-Cu and conductor mass in kt kt 15 T 16 T Non-Cu 3 4 Total 7 10

Target cost of conductor

- Discussion between mass and performance based cost is on-going
- Target performance is set to $J_c(4.2 \text{ K}, 16 \text{ T}) = 1500 \text{ A/mm}^2$
- Outer layers require larger Cu/non-Cu ratios than inner layers

Performance based cos	st c _p	Mass based cost <i>c</i> _m
$c_{\rm pt} = 5 {\rm EUR/kA.m}$ at 4.2 k	Kand 16 T	$c_{\rm mt} = 430 \; {\rm EUR/kg}$
$c_{\rm pp} = 10 \text{ EUR/kA.m at } 4.2$	K and 16 T	$c_{\rm mp} = 860 \; {\rm EUR/kg}$
$C_{\rm p} = c_{\rm p} \times J_{\rm c} \times A_{\rm SC} \times N \times L$	$= c_{\rm m} \times 2m_{\rm SC}$	$C_{\rm m} = c_{\rm m} (A_{\rm SC} + A_{\rm Cu}) \times \rho \times N \times L = c_{\rm m} (m_{\rm SC} + m_{\rm Cu})$
	J _c (4.2 K, 16 T) =1	500 A/mm ²
	A _{SC} & A _{Cu} : Total ar	rea of SC and Cu in conductor
	m _{SC} & m _{Cu} : Total m	nass of SC and Cu
	<i>N</i> = 4578 units	
	<i>L</i> = 14.3 m : Lengt	th of per magnet unit
	ρ = 8.7 kg/dm ³	

Conductor cost for FCC-hh dipoles

Total cost of	15 T	16 T
conductor	[MEUR]	[MEUR]
C _{mt} with 430 EUR/kg	3,200	4,400
C _{mp} with 860 EUR/kg	6,300	8,800
$C_{\rm pt}$ with 5 EUR/kA.m	2,500	3,700
$C_{\rm pp}$ with 10 EUR/kA.m	4,700	7,400

Conductor amount vs operating temperature

- In the EuroCirCol baseline design we set a baseline margin of 10% at 4.2 K, which is equivalent to a margin of ~18% at 1.9 K
- If we assume the enthalpy margin is meaningful to compare the margin to quench:
 - We could re-design the magnet for 1.9 K, such that the margin is limited to 13%
 - This, at this stage, appears nevertheless too aggressive.

Conductor amount vs aperture

- Increasing the aperture from 50 to 60 mm would increase the required conductor amount by ~13%
- This estimate coincides well with the approximate estimate:

 $A = (k^2 + 2kr_i)\phi^*, \ k = \frac{B_1\pi}{2\mu_0 J_{\text{eng}}\sin\phi},$

with $r_i \approx 50-60$ mm (aperture); $J_{eng} \approx 880$ A/mm² (equivalent average engineering current density), $B_1 = 16$ T, $\phi = 60^{\circ}$

 In terms of magnet cost this would represent a cost increase of approximately ~10%, i.e., the magnet cost increase is of the order of half of the aperture increase:

$$\Delta \text{Cost}, \% \approx \frac{1}{2} \Delta r_i, \%$$
 at around 50 mm and 16 T

Total cost of FCC-hh dipoles

- FCC with LHC magnet cost without conductor: 630 kEUR/unit x 4578 unit= 2900 MEUR
- Magnets at 4.2 K at 10% margin and at 1.9 K at ~18% margin have a similar cost
- The cost for 15 T magnets is given for 4883 units (constant integrated field)

Total cost	15 T [MEUR]	16 T [MEUR]
C _{mt} with 430 EUR/kg	6,100	7,300
$C_{\rm mp}$ with 860 EUR/kg	9,200	11,700
$C_{\rm pt}$ with 5 EUR/kA.m	5,400	6,600
C _{pp} with 10 EUR/kA.m	7,600	10,300

Conclusion

- The difference in cost for the magnets between 1.9 K or 4.7 K is ~1 GEUR
- Operating at 15 T instead of 16 T represents a cost reduction of >1 GEUR
- Margin is very expensive especially at 4.2 K
 - 5% (10%->15%) margin at 4.2 K => 40% more conductor cost (~ 3 GEUR)
 - 5% (15%->20%) margin at 1.9 K => 25% more conductor cost (~ 1.5 GEUR)
- The conductor cost represents more than half of the magnet cost: any effort shall be pursued to minimize this cost

