FCC-ee Dynamic Aperture @ 175 GeV

Luis MEDINA

UNIVERSIDAD DE GUANAJUATO
División de Ciencias e Ingenierías
Mexico

FCC Week 2015 Rome

Thanks to A. Bogomyagkov, K. Oide, P. Piminov, and F. Zimmermann

April 14th, 2016
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
• **Review** of DA results.
• Two FCC-ee crab-waist (175 GeV) lattices with asymmetric IRs under study [1].

AB
FCC-ee V9-PS2, 26 mrad, developed by A. Bogomyagkov and optimized by P. Piminov [4].

KO
FCC-ee and V74-11, 30 mrad (asymmetric L^*), developed by K. Oide [5].
IR optics

Left side

AB

Right side

KO

Conclusions
Parameters and Simulations

- Dynamic Aperture (DA): Limit on the **amplitude** of oscillations beyond which motion is unstable. It is usually found by particle tracking.

Studies to be presented:
- **4D DA** by tracking with **PTC** on AB V9-PS2-1 and KO V74-11.
- Observation @ IP.
- **6D DA** for the latest lattices, taking into account several **effects**:
 - RF, damping by SR, tapering, crab waist...

<table>
<thead>
<tr>
<th>Energy</th>
<th>β_x^*</th>
<th>β_y^*</th>
<th>ϵ_y / ϵ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>175 GeV</td>
<td>50 cm</td>
<td>1 mm</td>
<td>0.2 %</td>
</tr>
</tbody>
</table>
One year ago...

Since then...
Adjustments to fulfill geometric constrains, reduction of SR in the IR, optimization of momentum acceptance and DA, etc.
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov's FCC-ee V9-PS2 lattice
 K. Oide's FCC-ee V74-11 lattice

3 Conclusions
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta p/p = -1.8\% \]

KO FCC-ee V74-11

Minimum DA

<table>
<thead>
<tr>
<th>30.0</th>
<th>25.0</th>
<th>20.0</th>
<th>15.0</th>
<th>10.0</th>
<th>5.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.0</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

FCC-ee Dynamic Aperture @ 175 GeV

Luis MEDINA

Introduction

Dynamic Aperture Results

4D DA Comparison

AB’s FCC-ee lattice

KO’s FCC-ee lattice

Conclusions
Dynamic Aperture Results

4D DA Comparison

AB's FCC-ee lattice
KO's FCC-ee lattice

Conclusions
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta p/p = -1.2\% \]

KO FCC-ee V74-11

Minimum DA
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta \frac{p}{p} = -0.9\% \]

KO FCC-ee V74-11

\[\Delta \frac{p}{p} = -0.9\% \]
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta \rho / \rho = -0.6\% \]

KO FCC-ee V74-11

Minimum DA

\[\text{Minimum DA} \]
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta p/p = -0.3\% \]

KO FCC-ee V74-11

Minimum DA
4D DA Comparison

AB FCC-ee V9-PS2-1

- $\Delta p/p = 0.0\%$

KO FCC-ee V74-11

- $\Delta p/p = 0.0\%$

Minimum DA

- FCCee-AB-V9-PS2-1 ($\sigma_x = 2.64\times10^{-5}\text{ m}$, $\sigma_y = 5.28\times10^{-8}\text{ m}$, $\sigma_y/\sigma_x = 0.2\%$)
- FCCee-KO-V74-11 ($\sigma_x = 2.59\times10^{-5}\text{ m}$, $\sigma_y = 5.18\times10^{-8}\text{ m}$, $\sigma_y/\sigma_x = 0.2\%$)
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta p/p = +0.3\% \]

KO FCC-ee V74-11

Minimum DA
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta p/p = +0.6\% \]

KO FCC-ee V74-11

Minimum DA
4D DA Comparison

AB FCC-ee V9-PS2-1

Δp/p = +0.9%

KO FCC-ee V74-11

Minimum DA

![Graphs showing dynamic aperture comparison between AB and KO FCC-ee lattices.](image)
4D DA Comparison

AB FCC-ee V9-PS2-1

Δp/p = +1.2%

KO FCC-ee V74-11

Minimum DA

<table>
<thead>
<tr>
<th>Δp/p [%]</th>
<th>Minimum DA [σ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>2.64e-05 m</td>
</tr>
<tr>
<td>5.0</td>
<td>5.28e-08 m</td>
</tr>
<tr>
<td>10.0</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

FCCee-AB-V9-PS2-1 (σx = 2.64e-05 m, σy = 5.28e-08 m, σy/σx = 0.2%)

FCCee-KO-V74-11 (σx = 2.59e-05 m, σy = 5.18e-08 m, σy/σx = 0.2%)
4D DA Comparison

AB FCC-ee V9-PS2-1

\[\Delta \rho/\rho = +1.5\% \]

KO FCC-ee V74-11

Minimum DA
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
AB: 4D DA revisited

Crab off, 50 turns, $\epsilon_x = 1.4\,\text{nm} \cdot \text{rad}$,

$\nu_{x,y,s} = 395.10, 297.16, 0.0807$, $\tau_x = 44$ turns,

$U_0 = 7.97\,\text{GeV}$, $U_{rf} = 11\,\text{GV}$.
Nonlinear chromaticity from tracking with 1024 turns. Small betatron amplitudes. Initial transverse coordinates are changed according to product of energy deviation and nonlinear dispersion. RF is off.
Betatron tunes dependence on energy deviation obtained from tracking with 1024 turns. Initial transverse coordinates are zero, but betatron amplitudes depend on growing energy deviation. RF is on.
AB: No damping nor tapering

Crab off, 50 turns, $\epsilon_x = 1.4 \text{ nm} \cdot \text{rad}$,

$\nu_{x,y,s} = 395.10, 297.16, 0.0807$, $\tau_x = 44$ turns,

$U_0 = 7.97 \text{ GeV}$, $U_{rf} = 11 \text{ GV}$.
AB: No damping nor tapering

\[\nu_{x,y,s} = 395.10, 297.16, 0.0807, \tau_x = 44 \text{ turns}, \]
\[U_0 = 7.97 \text{ GeV}, \quad U_{rf} = 11 \text{ GV}. \]
Crab off, 50 turns, $\epsilon_x = 1.4$ nm \cdot rad, RF on, $\nu_x, y, s = 395.10, 297.16, 0.0807$, $\tau_x = 44$ turns, $U_0 = 7.97$ GeV, $U_{rf} = 11$ GV.
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
KO: Effect of RF and radiation

RF off, radiation off

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of RF and radiation

RF on, radiation off

Crab on, 50 turns, $\epsilon_x = 1.34$ nm \cdot rad, $\sigma_E = 0.144\%$, $\sigma_z = 2.4$ mm,
$v_x, y, z = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74$ GeV.
KO: Effect of RF and radiation

RF on, radiation on (damping each turn)

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_x, y, z = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of RF and radiation

RF on, radiation on (each element)

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of larger $\beta_{x,y}^*$

$\beta_{x,y}^* = 0.5 \text{ m, } 1 \text{ mm}$

Horizontal plane:

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm \cdot rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of larger $\beta^*_{x,y}$

$\beta^*_{x,y} = 1.0 \text{ m, } 2 \text{ mm}$

Horizontal plane:

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of larger $\beta_{x,y}^*$

$\beta_{x,y}^* = 0.5 \text{ m, 1 mm}$

Vertical plane:

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.
KO: Effect of larger $\beta_{x,y}^*$

$\beta_{x,y}^* = 1.0 \text{ m, 2 mm}$

Vertical plane:

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$, $\sigma_E = 0.144 \%$, $\sigma_z = 2.4 \text{ mm}$, $\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$. $U_0 = 7.74 \text{ GeV}$.

K. Oide
Summary: **KO FCCee-V74-11**

Effect of RF and radiation

- **RF off, radiation off**
- **RF on, radiation off**
- **RF on, radiation on (damping each turn)**
- **RF on, radiation on (each element)**

Crab on, 50 turns, $\epsilon_x = 1.34 \text{ nm} \cdot \text{rad}$,
\[\nu_{x,y,z} = 387.0800, 387.1400, -0.0686. \]
\[\sigma_E = 0.144 \%, \sigma_z = 2.4 \text{ mm}, U_0 = 7.74 \text{ GeV}. \]
Summary: KO FCCee-V74-11

Effect of larger $\beta^{*}_{x,y}$

$\beta^{*}_{x,y} = 0.5 \text{ m, } 1 \text{ mm}$

$\beta^{*}_{x,y} = 1.0 \text{ m, } 2 \text{ mm}$

Crab on, 50 turns, $\epsilon_{x} = 1.34 \text{ nm} \cdot \text{ rad}$,
$\nu_{x,y,z} = 387.0800, 387.1400, -0.0686$.
$\sigma_{E} = 0.144 \text{ %}, \sigma_{z} = 2.4 \text{ mm}, U_{0} = 7.74 \text{ GeV}$.

The reduction of the vertical aperture for $\beta^{*}_{y} = 1 \text{ mm}$ is due to synchrotron radiation in the final quadrupoles.
Effects included in KO studies

<table>
<thead>
<tr>
<th>Effects</th>
<th>Included?</th>
<th>Significance for DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrotron motion</td>
<td>✓</td>
<td>Essential</td>
</tr>
<tr>
<td>Radiation damping (turn-by-turn)</td>
<td>✓</td>
<td>Essential, increases DA</td>
</tr>
<tr>
<td>Radiation damping (each element)*</td>
<td>✓</td>
<td>Essential, decreases DA</td>
</tr>
<tr>
<td>Tapering</td>
<td>✓</td>
<td>Essential</td>
</tr>
<tr>
<td>Crab-waist</td>
<td>✓</td>
<td>Essential, decreases DA,</td>
</tr>
<tr>
<td>Solenoids</td>
<td>✓</td>
<td>Minimal, if locally compensated</td>
</tr>
<tr>
<td>Maxwellian fringe fields</td>
<td>✓</td>
<td>Small</td>
</tr>
<tr>
<td>Kinetic terms</td>
<td>✓</td>
<td>Small</td>
</tr>
<tr>
<td>Errors / misalignments</td>
<td>✗</td>
<td>Essential, correction schemes must be developed</td>
</tr>
</tbody>
</table>

* No fluctuations yet.

Effects Included? Significance for DA

- **Synchrotron motion**: ✓ Essential
- **Radiation damping (turn-by-turn)**: ✓ Essential, increases DA
- **Radiation damping (each element)**: ✓ Essential, decreases DA
- **Tapering**: ✓ Essential
- **Crab-waist**: ✓ Essential, decreases DA,
- **Solenoids**: ✓ Minimal, if locally compensated
- **Maxwellian fringe fields**: ✓ Small
- **Kinetic terms**: ✓ Small
- **Errors / misalignments**: ✗ Essential, correction schemes must be developed

* K. Oide

Dynamic Aperture Results

AB's FCC-ee lattice

KO's FCC-ee lattice

Conclusions
Contents

1 Introduction

2 Dynamic Aperture Results
 4D DA Comparison
 A. Bogomyagkov’s FCC-ee V9-PS2 lattice
 K. Oide’s FCC-ee V74-11 lattice

3 Conclusions
Conclusions

- Significant **progress** has been done in both AB and KO optics.
- Lattice optimizations have lead to increased DAs.
- Several **effects** have been simulated, and their impact on the 6D DA has been observed.
- Minimum DA (on-momentum): 20σ for AB, and 28σ for KO.
- DA almost **satisfy** the requirement of $15\sigma / 5\sigma$ for on-energy / 2% off-energy. [6].

Outlook

- Continue with **optimization**...
- **Statistical** approach for DA with **radiation**.
- Estimation of DA with **errors** and **misalignments**.
References

