

SRF Material Options for FCC

Sarah Aull on behalf of the FCC RF & WP3 working group

FCC Week, 10. - 15.04.2016

 $P_{dyn} = \frac{V_{RF}^2}{\frac{R}{Q} \cdot Q_0} \cdot \frac{1}{\eta_{carnot} \eta_{tech}}$

$$P_{dyn} = \frac{V_{RF}^2}{\frac{R}{Q} \cdot Q_0} \cdot \frac{1}{\eta_{carnot} \eta_{tech}}$$

Accelerating gradient is a design choice Qo is given by the temperature, frequency and material choice

Surface Resistance

 $R_S = R_{BCS} + R_{res}$

Surface Resistance

 $R_S = R_{BCS} + R_{res}$

 R_{BCS} increases with f^2 R_{BCS} decreases with $exp(T/T_c)$ R_{BCS} depends on the mean free path

Surface Resistance

$$R_S = R_{BCS} + R_{res}$$

 R_{BCS} increases with f^2 R_{BCS} decreases with $exp(T/T_c)$ R_{BCS} depends on the mean free path

R_{res} is independent of T R_{res} depends only slightly on f Field dependence depends on material

Material	Achieved	Expected in mass production
Bulk Nb	0.5 - 20 nΩ	10-15 nΩ
Nb/Cu	0.5 - 30 nΩ	20 nΩ

Bulk Niobium - A Well-Known Technology

High level of expertise High cost for raw material Requires magnetic shielding Only operation at < 2.1 K

Improved surface preparation techniques Higher E_{acc} in mass production

N Doping - Pushing the Limits of Bulk Niobium

Very high Q at 2 K High cost for raw material Requires magnetic shielding Reduced quench field Performance at lower frequencies? Performance at 4.2 K?

Nb/Cu - New Coating Techniques on the Rise

Lower raw material costs High thermal stability No magnetic shielding Reduced microphonic

Only low E_{acc} due to strong Q-Slope Mitigated Q-Slope for energetic condensation techniques

Nb/Cu - New Coating Techniques on the Rise

Lower raw material costs High thermal stability No magnetic shielding Reduced microphonic

Only low E_{acc} due to strong Q-Slope Mitigated Q-Slope for energetic condensation techniques

Nb/Cu - New Coating Techniques on the Rise

Energetic Condensation

Energetic Condensation techniques like ECR and HIPIMS promise improved film microstructure and interface

Energetic Condensation

Energetic Condensation techniques like ECR and HIPIMS promise improved film microstructure and interface

Thermal boundary resistance model (Palmieri/Vaglio, SUST 29, 2016) yields 0.002 % detached surface area.

sarah.aull@cern.ch

Energetic Condensation

Energetic Condensation techniques like ECR and HIPIMS promise improved film microstructure and interface

Thermal boundary resistance model (Palmieri/Vaglio, SUST 29, 2016) yields 0.002 % detached surface area. Biased HIPIMS samples show denser film for non-normal incident angle.

sarah.aull@cern.ch

Nb3Sn/Nb - Beyond Niobium

Very high Q at 4.2 K High cost for raw material Requires magnetic shielding Premature quenching Not a mature technology yet Multicell cavities Higher quench field Mechanical behavior Nb3Sn/Cu (See Poster by K. Ilyina)

Perspectives for R&D

4.5 K operation: Optimise mean free path Cure Q-slope A15 materials

2 K operation: Optimise residual resistance Cure Q-slope

Cryogenic Power for the Top Machine

The perspective of cavity performances yields similar cryogenic losses for Nb/Cu at 400 MHz and 4.5 K and bulk Nb at 800 MHz and 2.0 K. A15 Materials might further reduce the cryogenic power.

Cryogenic Power for the Top Machine

The perspective of cavity performances yields similar cryogenic losses for Nb/Cu at 400 MHz and 4.5 K and bulk Nb at 800 MHz and 2.0 K. A15 Materials might further reduce the cryogenic power.

Conclusion

- The application of Nb/Cu technology would reduce the installation and running costs of the cryogenic system as well as the cost of cavities and cryomodules.
- Energetic condensation techniques promise cavity performances at 4.5 K comparable to bulk niobium.
- A15 materials such as Nb3Sn may even further decrease the dynamic losses at 4.5 K.

