

© Stephan Pastis/Dist. by UFS, Inc.

Precision EW Calculations

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

Rome, 04/2016

- 1. Introduction
- 2. Electroweak Precision Observables
- 3. Higgs Observables
- 4. Conclusions

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Theory situation:

measured observables have to be compared with theoretical predictions (in various models: SM, MSSM, ...)

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Theory situation:

measured observables have to be compared with theoretical predictions (in various models: SM, MSSM, ...)

Measured data is only meaningful if it is matched with theoretical calculations (masses, couplings) at the same level of accuracy

Experimental situation:

LHC/ILC/FCC-ee/CEPC/... will provide (high!) accuracy measurements!

Theory situation:

measured observables have to be compared with theoretical predictions (in various models: SM, MSSM, ...)

Measured data is only meaningful if it is matched with theoretical calculations (masses, couplings) at the same level of accuracy

> Theoretical calculations should be viewed as an essential part of all (current and future) High Energy Physics programs

FCC-ee: Phenomenology working groups:

\Rightarrow work done for WG2 :-)

Where we need theory prediction:

- 1. Prediction of the measured quantity Example: M_W
 - \rightarrow at the same level or better as the experimental precision
- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Where we need theory prediction:

1. Prediction of the measured quantity Example: M_W

 \rightarrow at the same level or better as the experimental precision

- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow W^+W^-$
 - \rightarrow better than then ''pure'' experimental precision

Two types of theory uncertainties:

- 1. intrinsic: missing higher orders
- 2. parametric: uncertainty due to exp. uncertainty in SM input parameters Example: m_t , m_b , α_s , $\Delta \alpha_{had}$, ...

Options for the evaluation of intrinsic uncertainties:

1. Take the known contribution at *n*-loop and (n-1)-loop and thus estimate the n + 1-loop contribution:

$$\frac{(n+1)(\text{estimated})}{n(\text{known})} \approx \frac{n(\text{known})}{(n-1)(\text{known})}$$

⇒ simplified example! Has to be done "coupling constant by coupling constant"

- **2.** Variation of $\mu^{\overline{\text{DR}}}$ (QCD, EW!)
- 3. Compare different renormalizations

4. ???

- 1. exploit the LHC
- 2. construct the ILC as quickly as possible in Japan
- after LHC construct the FCC at CERN depending on physics outcome of LHC/ILC: decide whether to start with FCC-ee or FCC-hh

2. Electroweak Precision Observables

Comparison of observables with theory:

Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}, M_h$$
Theory:
 ${\rm SM, MSSM}, \ldots$ \downarrow

Test of theory at quantum level: Sensitivity to loop corrections, e.g. \boldsymbol{X}

SM: limits on M_H , BSM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed \Rightarrow only models "ready" so far: SM, MSSM

Precision observables in the SM and the MSSM M_W , $\sin^2 \theta_{\text{eff}}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

Evaluate Δr from μ decay $\Rightarrow M_W$

One-loop result for M_W in the SM: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_{W}^2}{s_{W}^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 - \log (M_H/M_W)$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

Precision observables in the SM and the MSSM M_W , $\sin^2 \theta_{\text{eff}}$, M_h , $(g-2)_{\mu}$, b physics, . . .

A) Theoretical prediction for M_W in terms

B) Effective mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 |Q_f|} \left(1 - \frac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

Corrections to M_W , $\sin^2 \theta_{\text{eff}} \rightarrow \text{approximation via the } \rho$ -parameter:

 ρ measures the relative strength between neutral current interaction and charged current interaction

$$\rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\Sigma_Z(0)}{M_Z^2} - \frac{\Sigma_W(0)}{M_W^2}$$

(leading, process independent terms)

 $\Delta \rho$ gives the main contribution to EW observables:

 $\Delta \rho^{\rm SUSY} \text{ from } \tilde{t}/\tilde{b} \text{ loops} > 0 \quad \Rightarrow M_W^{\rm SUSY} \gtrsim M_W^{\rm SM} \text{, } \sin^2 \theta_{\rm eff}^{\rm SUSY} \lesssim \sin^2 \theta_{\rm eff}^{\rm SM}$

 $\Delta \rho^{\text{SUSY}}$ from \tilde{t}/\tilde{b} loops > 0 $\Rightarrow M_W^{\text{SUSY}} \gtrsim M_W^{\text{SM}}$, $\sin^2 \theta_{\text{eff}}^{\text{SUSY}} \lesssim \sin^2 \theta_{\text{eff}}^{\text{SM}}$

SM result for M_W and $\sin^2 \theta_{\text{eff}}$:

- full one-loop
- full two-loop
- leading 3-loop via $\Delta\rho$
- leading 4-loop via $\Delta \rho$

Our MSSM result for M_W and $\sin^2 \theta_{eff}$:

- full SM result (via fit formel)
- full MSSM one-loop (incl. complex phases)
- all existing two-loop $\Delta\rho$ contributions
- \Rightarrow non- $\Delta \rho$ one-loop and $\Delta \rho$ two-loop contributions sometimes non-negligible!

The W boson mass

Experimental accuracy:

Today: LEP2, Tevatron: $M_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$

ILC/FCC-ee: – polarized threshold scan – kinematic reconstruction of W^+W^- [G. Wilson '13] - hadronic mass (single W) $\delta M_W^{\text{exp,ILC(FCC-ee)}} \leq 3(1) \text{ MeV (from thr. scan)} \quad \leftarrow \text{TU neglected}$ Theoretical accuracies: intrinsic today: $\delta M_W^{\text{SM,theo}} = 4 \text{ MeV}, \quad \delta M_W^{\text{MSSM,today}} = 5 - 10 \text{ MeV}$ intrinsic future: $\delta M_W^{\text{SM,theo,fut}} = 1 \text{ MeV}, \quad \delta M_W^{\text{MSSM,fut}} = 2 - 4 \text{ MeV}$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta M_W^{\text{para},m_t} = 5.5 \text{ MeV}, \quad \delta M_W^{\text{para},\Delta\alpha_{\text{had}}} = 2 \text{ MeV}, \quad \delta M_W^{\text{para},M_Z} = 2.5 \text{ MeV}$ parametric future: $\delta m_t^{\text{fut}} = 0.05 \text{ GeV}$, $\delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$, $\delta M_Z^{\text{ILC/FCC-ee}} = 1/0.1 \text{ MeV}$ $\Delta M_W^{\text{para,fut},m_t} = 0.5 \text{ MeV}, \ \Delta M_W^{\text{para,fut},\Delta\alpha_{had}} = 1 \text{ MeV}, \ \Delta M_W^{\text{para,fut},M_Z} = 0.2/0.02 \text{ MeV}$

Not only $e^+e^- \rightarrow W^{(*)}W^{(*)}$, but $e^+e^- \rightarrow WW \rightarrow 4f$ needed

<u>Current status:</u> full one-loop for $2 \rightarrow 4$ process [A. Denner, S. Dittmaier, M. Roth, D. Wackeroth '99-'02] \Rightarrow extraction of M_W at the level of ~ 6 MeV

Most recent improvement:

leading 2L corrections from EFT

[Actis, Beneke, Falgari, Schwinn '08]

 \Rightarrow impact on M_W at the level of $\sim 3 \text{ MeV}$

 \Rightarrow full 2L for 2 \rightarrow 4 process not foreseeable

Potentially possible:

2L resummed higher-order terms for $e^+e^- \rightarrow WW$ and $W \rightarrow ff'$ \Rightarrow extraction of M_W at ~ 1 MeV?? The effective weak leptonic mixing angle: $\sin^2 \theta_{eff}$

Experimental accuracy:

Today: LEP, SLD: $\sin^2 \theta_{\text{off}}^{\text{exp}} = 0.23153 \pm 0.00016$ GigaZ/TeraZ: both beams polarized, Blondel scheme $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,ILC(FCC-ee)}} = 13(6) \times 10^{-6} \quad \leftarrow \text{TU neglected}$ Theoretical accuracies: $[10^{-6}]$ intrinsic today: $\delta \sin^2 \theta_{eff}^{SM,theo} = 47$ $\delta \sin^2 \theta_{eff}^{MSSM,today} = 50 - 70$ intrinsic future: $\delta \sin^2 \theta_{\text{off}}^{\text{SM,theo,fut}} = 15$ $\delta \sin^2 \theta_{\text{off}}^{\text{MSSM,fut}} = 25 - 35$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} = 30, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta\alpha_{\text{had}}} = 36, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},M_Z} = 14$ parametric future: $\delta m_t^{\text{fut}} = 0.05 \text{ GeV}$, $\delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$, $\delta M_Z^{\text{ILC/FCC-ee}} = 1/0.1 \text{ MeV}$ $\Delta \sin^2 \theta_{\text{eff}}^{\text{para,fut},m_t} = 2, \ \Delta \sin^2 \theta_{\text{eff}}^{\text{para,fut},\Delta \alpha_{\text{had}}} = 18, \ \Delta \sin^2 \theta_{\text{eff}}^{\text{para,fut},M_z} = 6.5/0.7$

SM input: the top quark mass: m_t

What is the top mass?

Particle masses are not direct physical observables one can only measure cross sections, decay rates, ...

Additional problem for the top mass:

what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $O(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution \Rightarrow "MC" mass, close to "pole" mass? $\delta m_t^{exp,LHC} \lesssim 1 \text{ GeV}$
- At e^+e^- colliders: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow **SAFE!** transition to other mass definitions possible, $\delta m_t^{\text{exp,ILC/FCC-ee}} \lesssim 0.03 \text{ GeV}$

transition to other mass definitions possible $\Rightarrow \delta m_t^{exp+theo} \lesssim 0.1 \text{ GeV}$ \Rightarrow dominated by theory uncertainty! \Rightarrow ILC and FCC-ee so far similar!

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

 \Rightarrow Precision Higgs physics needs ILC/FCC-ee precision top physics

SM input: $\Delta \alpha_{had} \Rightarrow$ could be limiting factor!

From $e^+e^- \rightarrow$ had. using dispersion relation

today: $\delta(\Delta \alpha_{had}) \sim 10^{-4}$ possible improvement in the future: $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$

Direct determination at FCC-ee from $e^+e^- \rightarrow f\bar{f}$ off the Z peak [P. Janot '15] possible improvement in the future: $\delta(\Delta \alpha_{had}) \sim 2 \times 10^{-5} \Rightarrow TU$ neglected

Calculation of $e^+e^- \rightarrow f\bar{f}$ needed at 3-loop and beyond: [A. Freitas '16] current techniques (2L/3L): corrections of ~ 10⁻³ new calculation methods (2L/3L): corrections of ~ 10⁻⁴ unknown methods 3L: $\leq 10^{-5}$ unknown methods 4L: ~ 10⁻⁵ (+ higher-orders in real photon emission) \Rightarrow improvement unclear

Theory and parametric uncertainties 4/11						
	ILC	FCC-ee	perturb. error with 3-loop [†]	Param. error ILC*	Param. error FCC-ee**	
$M_{\sf W}$ [MeV]	3–5	~ 1	1	2.6	1	
${\sf F}_Z$ [MeV]	~ 1	~ 0.1	$\lesssim 0.2$	0.5	0.06	
$R_b [10^{-5}]$	15	\lesssim 5	5–10	< 1	< 1	
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	1.3	0.6	1.5	2	2	
		0	2			

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$ $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

* ILC: $\delta m_t = 100 \text{ MeV}, \ \delta \alpha_s = 0.001, \ \delta M_Z = 2.1 \text{ MeV}$ **FCC-ee: $\delta m_t = 50 \text{ MeV}, \ \delta \alpha_s = 0.0001, \ \delta M_Z = 0.1 \text{ MeV}$ also: $\delta(\Delta \alpha) \sim 5 \times 10^{-5}$

Note: ILC parametric somewhat pessimistic

 \Rightarrow indirect prediction of the Higgs mass in the SM

[LEPEWWG '12]

 \Rightarrow fits with today's precision

Most precise M_H test with the ILC:

 $\Rightarrow \delta M_H^{\text{ind}} \lesssim 6 \text{ GeV} \qquad \qquad \Leftarrow \text{ no FCC-ee analysis done so far} \\ \Rightarrow \text{ extremely sensitive test of SM (and BSM) possible}$

3. Higgs observables: Higgs couplings

LHC always measures $\sigma \times BR$

⇒ Total width $\Gamma_{H,tot}$ cannot be measured without further theory assumptions.

Recommendation of the LHCHXSWG:

⇒ Higgs coupling strength scale factors: κ_i For each benchmark (except overall coupling strength) various versions are proposed: with and without additinal theory assumptions

- no additional theory assumptions:
- \Rightarrow Determination of ratios of scaling factors, e.g. $\kappa_i \kappa_j / \kappa_H$
- additional theory assumptions (on $\Gamma_{H,tot}$ or $\kappa_{W,Z}$ or $H \to NP$)
- \Rightarrow Determination of κ_i (evaluated to NLO QCD accuracy)

HL-LHC vs. ILC in the most general κ framework:

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

assumption: $BR(H \rightarrow NP) = BR(H \rightarrow inv.)$

HL-LHC vs. ILC in the most general κ framework:

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

Sven Heinemeyer FCC week 2016, Rome, 12.04.2016

assumption: $\kappa_V \leq 1$

HL-LHC vs. ILC in the most general κ framework:

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

no theory assumptions, full fit

 \Rightarrow strong improvement with the ILC

no theory assumptions, full fit

LC vs. FCC-ee:

Higgs coupling determination at e^+e^- collider

Some specifics:

recoil method: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $\mu^+\mu^-$

- \Rightarrow total measurement of Higgs production cross section
- ⇒ NO additional theoretical assumptions needed for absolute determination of partial widths
- \Rightarrow all observable channels can be measured with high accuracy

 $\Rightarrow SM cross section predictions at the 1% accuracy level$ $\Rightarrow improvements necessary ... full 2-loop calculations and more ...?!$

 \Rightarrow concentrate on theory BR uncertainties from now on

Latest SM Higgs BR predictions:

Based on HDECAY and Prophecy4f:

$$\Gamma_H = \Gamma^{\mathsf{HD}} - \Gamma^{\mathsf{HD}}_{ZZ} - \Gamma^{\mathsf{HD}}_{WW} + \Gamma^{\mathsf{P4f}}_{4f}$$

- 1. Parametric Uncertainties: $p \pm \Delta p$
 - Evaluate partial widths and BRs with p, $p + \Delta p$, $p \Delta p$ and take the differences w.r.t. central values
 - Upper $(p + \Delta p)$ and lower $(p \Delta p)$ uncertainties summed in quadrature to obtain the Combined Parametric Uncertainty

2. Theoretical Uncertainties:

- Calculate uncertainty for partial widths and corresponding BRs for each theoretical uncertainty
- Combine the individual theoretical uncertainties linearly to obtain the Total Theoretical Uncertainty
- \Rightarrow estimate based on "what is included in the codes"!
- 3. Total Uncertainty:

Linear sum of the Combined Parametric Uncertainty and the Total Theoretical Uncertainties

Parameter	Central value	MS masses	Uncertainty	
$\alpha_s(M_Z)$	0.118		± 0.0015	
m_c	1.403 GeV	$m_c(3 \text{ GeV}) = 0.986 \text{ GeV}$	± 0.026 GeV	
m_b	4.505 GeV	$m_b(m_b) = 4.18 \text{ GeV}$	$\pm 0.03~{ m GeV}$	
m_t	172.5 GeV	$m_t(m_t)$ = 162.7 GeV	± 0.8 GeV	

Uncertainties: "consensus" of LHCHXSWG

 m_b uncertainty crucial

- \Rightarrow Lattice data much more optimistic . . .
- \Rightarrow but no consensus, not even in the lattice community \ldots ?!

Partial Width	QCD	Electroweak	Total
$H \to b \overline{b} / c \overline{c}$	$\sim 0.2\%$	$\sim 0.5\%$ for $M_H \lesssim$ 500 GeV	$\sim 0.5\%$
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		$\sim 0.5\%$ for $M_H \lesssim$ 500 GeV	$\sim 0.5\%$
$H \to t\bar{t}$	$\lesssim 5\%$	$\sim 0.5\%$ for $M_H <$ 500 GeV	$\sim 5\%$
$H \to gg$	\sim 3%	$\sim 1\%$	$\sim 3\%$
$H \to \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_H <$ 500 GeV	$\sim 0.5\%$

– QCD corrections: scale change by factor 2 and 1/2

- EW corrections: missing HO estimation based on the known structure and size of the NLO corrections
- Different uncertainties on a given channel added linearly
- \Rightarrow Strong improvement in \sim 20 years possible, but . . .
 - ... they have to be consistently implemented into codes!
- \Rightarrow intrinsic uncertainty can/will be sufficiently under control?!

Channel	Γ [MeV]	$\Delta lpha_s$	Δm_b	Δm_c	Δm_t	THU
$H \to b\overline{b}$	2.38	$^{-1.4\%}_{+1.4\%}$	$+1.7\% \\ -1.7\%$	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
$H \to \tau^+ \tau^-$	$2.56 \cdot 10^{-1}$	+0.0% +0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.1\% \\ -0.1\%$	+0.5% -0.5%
$H \to \mu^+ \mu^-$	$8.90 \cdot 10^{-4}$	+0.0% +0.0%	+0.0% -0.0%	$-0.1\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	+0.5% -0.5%
$H \to c \overline{c}$	$1.18 \cdot 10^{-1}$	-1.9% +1.9%	$-0.0\% \\ -0.0\%$	+5.3% -5.2%	+0.0% -0.0%	+0.5% -0.5%
$H \to gg$	$3.35 \cdot 10^{-1}$	+3.0% -3.0%	-0.1% +0.1%	+0.0% -0.0%	-0.1% +0.1%	+3.2% -3.2%
$H \to \gamma \gamma$	$9.28 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	$+1.0\% \\ -1.0\%$
$H \to Z\gamma$	$6.27 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	$+0.0\% \\ -0.1\%$	$+0.0\% \\ -0.1\%$	+5.0% -5.0%
$H \to WW^*$	$8.74 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
$H \to ZZ^*$	$1.07 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%

Data available for $M_H = 124 \text{ GeV}, 125 \text{ GeV}, 126 \text{ GeV}$

\Rightarrow substantially larger than κ precision at ILC/FCC-ee

Future theory uncertainties?

Parametric uncertainties:

- largely driven by $\delta m_b \Rightarrow$ improvement unclear (to me) lattice community does not seem to agree
- some improvement in α_s possible

Intrinsic uncertainties:

- $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}$: higher-order EW corrections ??
- $H \rightarrow \tau^+ \tau^-, H \rightarrow \mu^+ \mu^-$: higher-order EW corrections ?
- $H \rightarrow gg$: improvement difficult
- $H
 ightarrow \gamma\gamma$: already very precise . . .
- $H
 ightarrow Z \gamma$: EW corrections could help . . .
- $H \rightarrow WW^*, H \rightarrow ZZ^*$: already very precise, two-loop corrections unclear

⇒ intrinsic uncertainty can/will be sufficiently under control?!

Optimistic(?!) lattice expectations for the future:

Input Parameters

Lepage, Mackenzie, Peskin [arXiv:1404.0319]

- How well can the Higgs BRs be predicted in the future?
- Limitation due to parametric errors?
- use lattice gauge theory to improve α_s , m_b , and m_c (e.g. using current-current correlators) (stated errors already now quite small)
- optimistic projection for lattice improvements:

	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g	
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78	
+ PT	0.69	0.40	0.34	0.74	0.57	0.49	
+ LS	0.30	0.53	0.53	0.38	0.74	0.65	
$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43	
+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21	
$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17	
$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09	
ILC goal				0.30	0.70	0.60	(errors in $\%$)
	time cooler 10 15 years						
	unie-scale. TU-TS years						
	BR report – Alexander Mück – p.7/13						
	Dictopolit Mickander Mack p.77 13						

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE

TH

4. Conclusions

- Experimental precision must be matched with theory precision!
- <u>EWPO</u> can give valuable information about SM, BSM \rightarrow only SM, MSSM "ready" Most relevant: M_W , $\sin^2 \theta_{eff}$, (m_t) , ...
- Current theory uncertainties of M_W , $\sin^2 \theta_{\text{eff}}$ not sufficient Future theory uncertainties: M_W in SM: FCC-ee goals hard to match M_W in MSSM: even harder $\sin^2 \theta_{\text{eff}}$ in SM: more than a $\mathcal{O}(5)$ missing $\sin^2 \theta_{\text{eff}}$ in MSSM: even worse
- Top quark mass: mainly theory driven. Improvement at FCC-ee?
- $\Delta \alpha_{had}$: could be the limiting factor , Improvement at FCC-ee?
- <u>Higgs couplings:</u> XS and BR have to be under control Can sub-percent/permille level be matched?
 - XS: 1% possible, full 2-loop calculations needed?!
 - BR: intrinsic uncertainties could be brought down below 1% parametric uncertainties have (to me) unclear perspective

Back-up