FCC-hh Injection and Extraction
Kicker Topologies
and Solid State Generators

T. Kramer, CERN TE/ABT
FCC-week 2016, Rome, Italy

Acknowledgements
D. Barna, M.J. Barnes, W. Bartmann, F. Burkart, L. Ducimetière, T. Fowler,
B. Goddard, J. Holma, A. Lechner, J. Rodziewicz, V. Senaj, T. Stadlbauer, D. Woog
Outline of presentation

Injection
- Requirements
- Magnet
- Inductive Adder and Marx Generator

Extraction
- Redefined requirements
- Segmented kicker system

Dilution
- Considerations on dilution pattern
- Kickers and generators

CERN TE-ABT
FCC-hh Beam Transfer Systems
TE Special Technologies WP 3

Slides to be seen in context with the presentations of this morning (W. Bartmann, B. Goddard and F. Cerutti).
Injection Kicker System Requirements

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Energy</td>
<td>TeV</td>
<td>3.3</td>
</tr>
<tr>
<td>Available system length</td>
<td>m</td>
<td>150</td>
</tr>
<tr>
<td>Deflection angle</td>
<td>mrad</td>
<td>0.3</td>
</tr>
<tr>
<td>Field rise/fall time (0.5 % - 99.5 %)</td>
<td>ns</td>
<td>280</td>
</tr>
<tr>
<td>Field flattop duration</td>
<td>µs</td>
<td>2.25</td>
</tr>
<tr>
<td>Field flattop ripple</td>
<td>%</td>
<td>± 0.5</td>
</tr>
<tr>
<td>System impedance</td>
<td>Ω</td>
<td>5 ?</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Hz</td>
<td>up to 115</td>
</tr>
</tbody>
</table>

- Focused studies on **3.3 TeV** injection energy (lower energy variants are less demanding to design).

- **3.3 TeV pulse duration** is limited to **2.25 µs** for machine protection reasons.

- Final system impedance depends on system optimization outcome.
Injection Kicker Magnet

- **Delay line type** magnet (will be initially based on the LHC injection kicker design).
- System will be **much shorter** than the available length of 150 m.
- Inside vacuum.
- Optimized beam screen.

Additional magnet requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet filling time</td>
<td>ns</td>
<td>(\leq 200)</td>
</tr>
<tr>
<td>Magnet current</td>
<td>kA</td>
<td>2.6</td>
</tr>
<tr>
<td>Magnet voltage</td>
<td>kV</td>
<td>13</td>
</tr>
</tbody>
</table>
Injection Generator: Inductive Adder

• Design ongoing, impedance and dielectric evaluated (oil), magnetic cores specified.
• Characterization of components started.
• Assembly of prototype planned for 2017.
• Prototyping will profit from CLIC high precision developments.
• Successful development will have benefits for the CERN accelerator complex.

Additional generator requirements:

<table>
<thead>
<tr>
<th>Generator current</th>
<th>kA</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage range</td>
<td>kV</td>
<td>1.3 to 13</td>
</tr>
<tr>
<td>Output pulse rise time (0.5%-99.5%)</td>
<td>ns</td>
<td>80</td>
</tr>
</tbody>
</table>
Injection Generator: Inductive Adder

- Energy stored in distributed capacitors.
- Capacitors are partially discharged via SiC MOSFET switches in parallel branches.
- Several layers add up to the required output voltage.

Advantages:
- **Modularity**: the same module design can be used for different voltage/current specifications;
- **Short rise and fall times** can be achieved;
- Output pulse **voltage can be modulated** -> very good flat top quality.
- Switches and control electronics are referenced to ground.

Disadvantages:
- Output transformer limits maximum **pulse length** to typically ~3 μs;

Poster: “Inductive Adder Type Solid-State Pulse Modulator Development for Kicker Systems of the Future Circular Collider” by D. Woog et al.
Injection: Marx Generator

Alternative solution for longer flat top requirement.

- Capacitors **charged in parallel**, and **discharged in series** ⇒ high voltage output.
- **No output transformer** ⇒ maximum pulse length limited by droop of capacitor voltage.
- **Modularity**: the same design can be used for different voltage specifications.
- Switches and control electronics are **not referenced to ground**.
- Fail safe circuits to be investigated.
- **No modulation layer**.
- **Proposal** to develop a high power Marx Generator, under Portugal 2020 programme, for replacing thyratrons and PFN/PFL has been submitted.

Poster: “Marx Generator Solid-State Pulse Modulator Application to Kicker Systems of the Future Circular Collider” by M.J. Barnes et al.
Extraction Kicker System

- Part of a safety critical system: Up to 8.5 GJ to be safely extracted and dumped.
- **Extraction** Kickers & Generators
- **Horizontal Dilution** Kickers & Generators
- **Vertical Dilution** Kickers & Generators

<table>
<thead>
<tr>
<th>Unit</th>
<th>Extraction</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Energy</td>
<td>TeV</td>
<td>3.3 to 50</td>
</tr>
<tr>
<td>Available length</td>
<td>m</td>
<td>130</td>
</tr>
<tr>
<td>Deflection angle</td>
<td>mrad</td>
<td>0.13</td>
</tr>
<tr>
<td>Field rise time (0.5-90%)</td>
<td>µs</td>
<td>1</td>
</tr>
<tr>
<td>Field flattop duration</td>
<td>µs</td>
<td>≥ 333</td>
</tr>
<tr>
<td>Magnet current</td>
<td>kA</td>
<td>0.5 to 8</td>
</tr>
<tr>
<td>Output voltage range</td>
<td>kV</td>
<td>~10</td>
</tr>
</tbody>
</table>

- Initially challenging requirements. BT-Optics team developed very beneficial layout!
- Started with ultra high current considerations (tr=10µs).
- Evolved to a fast but **segmented system** for machine protection and feasibility reasons.
Extraction Kicker Magnet

Preliminary Design Concept:

- Based on (robust) LHC extraction kicker design.
- Outside vacuum (ceramic chamber).
- Segmented system (300 units per beam):
 - Allows for low inductance and fast rise time
 - Impact of one unit on beam $< 1\sigma$
 - 10 “Hot spares” included (increases system availability)

- With the help of the developed beam optics we succeeded to achieve reasonable design values!

Parameters (per module):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Modules</td>
<td>300</td>
</tr>
<tr>
<td>$B.dl [T.m]$</td>
<td>0.076</td>
</tr>
<tr>
<td>$k [\mu rad]$</td>
<td>0.517</td>
</tr>
<tr>
<td>$B [T]$</td>
<td>0.25</td>
</tr>
<tr>
<td>Length [mm]</td>
<td>300</td>
</tr>
<tr>
<td>Inductance [μH]</td>
<td>0.38</td>
</tr>
<tr>
<td>Current [kA]</td>
<td>7.3</td>
</tr>
<tr>
<td>Voltage [kV]</td>
<td>10 *</td>
</tr>
<tr>
<td>Aperture (h/v) [mm]</td>
<td>36/36</td>
</tr>
</tbody>
</table>

* assuming additional circuit inductance (1μH)
Extraction Kicker Generator

- One generator per Magnet (10 kV / 7.3kA / 1µs system rise time)
- Challenge: Compensation stage to be designed for 330 µs.
 - Long flat top needs some thought (compensation circuits).
- Possibly using **GTO switch** technology:
 - long “on” state duration (330µs) – segmented system (lower current helps a lot vs. very high current concept)
 - Promising developments within the “wide band gap” sector.
 - Direct laser triggering being investigated.
- Again **reasonable** basic design values achieved but:
 - Reliability will be extremely important!
 - Radiation effects will be a serious issue which needs to be addressed.
 - Controls and trigger (re-trigger) interface will be challenging.

Poster: “Prospects for laser triggering of large arrays of semiconductor switches” by Janusz Rodziewicz

Talk: “Controls architecture challenges for beam dump kickers” by P. Van Trappen, Thursday
Dilution Kicker System

- Dump **pattern crucial** for survival of dump block!
- **No crossing**, 1.8 mm minimum bunch separation.
- **Spiral** seems to be the only good solution.
- **Painting inwards** to ease hardware design.
- Resulting dump radius of ~600 mm!

- Same **radiation concerns** as for extraction!
- Horiz. and vertical system could use the **same generator design**.
 - Vertical generators would be triggered at 90 degree of horizontal sine wave (= 5µs @50kHz).
 - Ok for scheduled dump but for asynchronous events only the horiz. dilution is available immediately. (First 5 µs of beam would be painted on a horizontal line before the spiral starts.) Impact to be checked.

Talk: “Absorber for beam dumping ” by A. Lechner et al.

Poster: “FCC Dump Pattern Studies” by D. Barna (Wigner Institut)
Dilution Kicker Magnets

- Unexpectedly the most challenging system!
- **Highest B.dl to deliver** and aperture of the vertical system increases with length.
- Introduced **2 vert. magnet types**.
- **Quad** after horiz. kickers for “over focusing” under study.
- **Short magnets** to allow for 3-turn coil and higher dilution frequency.
- **High number** of magnets: Impact of missing (or misbehaving) unit lower (to be optimized).

Table: Kicker Magnets

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.dl</td>
<td>Tm</td>
</tr>
<tr>
<td>Leverage arm</td>
<td>m</td>
</tr>
<tr>
<td>Angle</td>
<td>mrad</td>
</tr>
<tr>
<td>Max. deflection</td>
<td>m</td>
</tr>
<tr>
<td>Design frequency</td>
<td>kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Horiz. Vert.1 Vert. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. B-field</td>
<td>T 0.85 0.5 0.4</td>
</tr>
<tr>
<td>Magnetic length</td>
<td>m 0.85 0.9 0.9</td>
</tr>
<tr>
<td>Horiz. aperture</td>
<td>mm 62 81 104</td>
</tr>
<tr>
<td>Vertical aperture</td>
<td>mm 40 58 81</td>
</tr>
</tbody>
</table>

Horizontal: 48 magnets, 54 m
Vertical 1: 39 magnets, 43 m
Vertical 2: 48 magnets, 54 m

Total length: ~150 m
Dilution Kicker Generators

<table>
<thead>
<tr>
<th>Magnet Inductance [µH]*</th>
<th>I [kA]*</th>
<th>U [kV] **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Vertical 1</td>
<td>4.8</td>
<td>10.8</td>
</tr>
<tr>
<td>Vertical 2</td>
<td>4.4</td>
<td>11</td>
</tr>
</tbody>
</table>

* For magnet with three turn coil.
** 1µH considered for additional circuit Inductance.

- Reasonable main capacitance: 1.8 µF
- Amplitude decay needs to be improved to avoid getting higher density towards the centre.
Summary/Outlook

- **Three challenging kickers systems** in FCC-hh (Injection, extraction, dilution).
- Development of **semiconductor generators** will also have a benefit for the CERN accelerator complex.
- **A segmented extraction system** topology has been developed.
- Since the basic ideas have settled, interfaces to **reliability engineering, risk assessment and machine protection** need to be addressed next.
- **Radiation hard design** needs to be studied.
- Several **international collaborations** on kicker technologies established/proposed.
- Initially **challenging basic design requirements** have been translated together with all collaborators and the TE-ABT team into a **feasible design draft**
 no technology show stopper identified yet!
- Nevertheless: the big challenge will be the **system safety and reliability**!!

Discussions on the presented topics are very welcome!
Grazie per l’attenzione!
Thank you for your attention!