



FCCWFFK**2016** 

ROME 11-15 APRII

### Fast Ramped Superconducting Septa

#### E. Fischer, K. Sugita, P. Schnizer

Superconducting Magnets and Testing Group GSI, Darmstadt, Germany

### Contents

### Introduction

- 1. Conceptual design studies
  - a) 3.5 T septum magnet
  - b) 8 T septum magnet

### 2. Design versions based on <u>Nuclotron Type Cables</u>

- a) Fast ramped superconducting magnets of the FAIR and NICA projects
  b) Design of a 2 T septum magnet
- c) Further options
- Summary



### GSÏ

### Introduction



#### Accelerator dipole magnet



Current dominated, cosine-theta Magnet

### Introduction



The concept of iron-yoked, truncated cosine-theta septum magnet



#### **History**

- Invention/International Patent Application (2011)
- International Magnet Technology Conference (2011)
- "Novel Concept of Truncated Iron-Yoked Cosine Theta Magnets and Design Studies for FAIR Septum Magnets", IEEE Trans. on Appl. Supercond. (2012)
- FCC Week 2015, Session: "Beam Transfer Systems & Instrumentation"
- US Patent: Grant (US9236176, 12 Jan. 2016)

### 1. Conceptual design studies $\Box = 1$

#### a) 3.5 T Septum Magnet (see FCC Week 2015)



### 1. Conceptual design studies $\Box = \frac{1}{2}$



| Parameter             |                    |  |  |  |
|-----------------------|--------------------|--|--|--|
| Coil                  | 2 layers / 1 layer |  |  |  |
| Flat Rutherford cable | 15.4 mm × 2.2 mm   |  |  |  |
| Strand diameter       | 1.605 mm           |  |  |  |
| Number of strands     | 28                 |  |  |  |
| Turn per pole         | 59                 |  |  |  |
| Current               | 15 kA              |  |  |  |
| Temperature           | 1.9 K              |  |  |  |

#### **Optimization (Roxie)**

Minimize Multipole fields at the reference radius |By| on the x-axis (-210 < x < -10)

Magnetic field gradient in the coil 7.87T/15.4mm ~ 500 T/m



GSI Helmholtzzentrum für Schwerionenforschung GmbH

### 1. Conceptual design studies $\Box = \frac{1}{2}$

#### b) 8 T Septum Magnet

#### Lorentz force



Asymmetric Lorentz forces have to be maintained by reinforced mechanical structure.

#### Coil end design



Transition of two-layer to one-layer coil requires complexity of the end design.

### 2. Design Versions with NTC $\Box = \Box$

#### a) Fast ramped superconducting magnets of the FAIR and NICA projects



#### **SIS100 Dipole Cross Section**



| Parameter      |                         |
|----------------|-------------------------|
| Field strength | 1.9 T                   |
| Current        | 13.1 kA                 |
| Ramp rate      | 4 T/sec. ⇒ 27.6 kA/sec. |

### 2. Design Versions with NTC $\Box = \Xi$

#### a) Fast ramped superconducting magnets of the FAIR and NICA projects

- Heavy Ion Synchrotrons with superconducting magnets
- SIS100 the core component of FAIR
- 100 Tm rigidity
- $B_{max} = 1,9 \text{ T}, \text{ }^{dB}/_{dt} = 4 \text{ T/s}, f_{cycle} = Hz$
- 1100 m circumference
- sc dipoles
- sc quadrupoles
- sc correctors
- cold beam pipe: vacuum quality critical for beam life time: < 10<sup>-12</sup> mbar
- SIS300 project phase B
- 300 Tm rigidity
- $B_{max} = 4,5 \text{ T}, \frac{dB}{dt} = 1 \text{ T/s}$
- sc dipoles
- sc quadrupoles
- sc correctors



### 2. Design Versions with NTC $\Box \equiv \mathbf{I}$

#### a) Fast ramped superconducting magnets of the FAIR and NICA projects

#### Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)



### 2. Design Versions with NTC $\Box \equiv \Box$

#### a) Fast ramped superconductiong magnets of the FAIR and NICA projects

| Comparison of the<br>Main Dipoles        | GSI    | NICA    | NICA     |     |
|------------------------------------------|--------|---------|----------|-----|
|                                          | SIS100 | Booster | Collider |     |
| cable                                    |        |         |          |     |
| tube inner diameter                      | 4.7    | 3       | 3        | mm  |
| number of strands                        | 21     | 18      | 16       |     |
| critical current (at 2.5 T<br>and 4.5 K) | 19.8   | 14.2    | 16.8     | kA  |
| dipole                                   |        |         |          |     |
| field strength                           | 1.9    | 1.8     | 1.8      | Т   |
| $\rightarrow$ field ramp rate            | 4      | 1.2     | ≤ 0.5    | T/s |
| pole gap height                          | 68     | 64      | 70       | mm  |
| $\rightarrow$ magnet length              | 3.1    | 2.2     | 1.94     | m   |
| curvature radius                         | 52.625 | 14.090  |          | m   |
| operation current                        | 13.1   | 9.68    | 10.4     | kA  |
| inductance                               | 0.55   | 0.63    | 0.45     | mH  |
| $_{\rm f}$ $\rightarrow$ maximum AC loss | 100    | 8.4     | 8        | W   |

### **2. Design Versions with NTC**

a) Fast ramped superconductiong magnets of the FAIR and NICA projects

### **Basic Topics and Design Aspects:**

- Superconducting
- Accelerator Magnets
- Fast ramped
- $\checkmark$  High repetition frequency  $\rightarrow$  Cooling conditions

- $\rightarrow$  high current density
- $\rightarrow$  high magnetic field quality
- $\rightarrow$  sc cable quench stability

  - $\rightarrow$  stable high heat removal,
  - $\rightarrow$  mechanical stability of the coil
- Nucloton type cables and corresponding cooling principles are effective for fast ramped superconducting accelerator magnets. They can be applied in a wide range of critical fields, operation cycles and magnets designs.
  - (► see also next presentation in this session)

### 2. Design Versions with NTC $\Box = \Box$

#### b) Design of a 2 T septum magnet with Nuclotron Type Cable



### 2. Design Versions with NTC $\Box \equiv \mathbf{I}$

#### c) Further Options with Nuclotron type cables



### 2. Design Versions with NTC

#### c) Further Options for high field magnets

Application for high field magnets Disadvantage: Low engineering current density ...Really? Here? Yes. Cross section of LHC Dipole R28mm R25mm Necessary for the helium channel

## LHC Dipole Rutherford cable

Nuclotron cable Helium-channel and -vessel are already in the cable!

and vacuum vessel

### 2. Design Versions with NTC $\Box = 1$

#### c) Further Options for high field magnets

Application for high field magnets

Disadvantage: Low engineering current density

In case of "High field" but "DC magnet"

→ Low AC losses → Smaller helium channel → High engineering current density

Engineering current density defined by cable geometry Mainly outer diameter of the cooling tube and strand diameter.

10 strands Cooling tube diameter: 2.5 mm Strand diameter: 0.95 mm Strand transposition pitch: 50 mm Cable diameter: 5.16 mm

**Relative engineering current density** ~**0.5** (cf. SIS100 Cable 0.27, Strand 1.0)





**Competitive!** 

or even key stoned strands, with/without inner tube!

How many strands in the cable?







GSI Helmholtzzentrum für Schwerionenforschung GmbH

#### **2. Design Versions with NTC GS**]

#### c) Further Options for high field magnets

Advantage compare with Rutherford cable, especially for large aperture magnets (incl. septa) **Mechanical stability** 

~50 GPa

0.002

Youngs modulus: Thermal contraction coefficients:

5-10 GPa 0.005

Without additional Helium channel und -vessel

Less Helium,-material, weight

→Cost effective!

Transport, cool-down/warm-up time...

Further cable R&D is necessary...





Coil without G11 structure →more engineering current density





Final focusing guadrupole for the High Energy Density Matter Generated by Heavy Ion Beams (HEDgeHOB) at FAIR



### 2. Further Design Options



#### Quadrupole, Combined function septum magnet

Quadrupole, higher multipole, and combined function septa are possible.



### Not only for superconducting magnets but also for conventional normal-conducting magnets!



### Summary

- Design studies on SC septa with iron-yoked, truncated cosine-theta concept is ongoing.
- 8 T, 2D design study shows the feasibility.
- For fast ramped SC septa, a Nuclotron cable has advantage for the cooling and will be suitable candidate.
- Coil end has inevitably complicated 3D structure.
  - Rutherford cable: bending direction "hard-way" and "soft-way".
  - Nuclotron cable: no difference of bend direction



### Summary

Next tasks:

- Detailed design study
  - 3D coil end design
  - Mechanical structure design and the analysis
    - Assembly, cool-down, powering (Lorentz forces)
- Cable design study and R&D
  - Nuclotron cable for high field magnets
  - Test cabling, prototype coil winding
- Prototype magnet assembly and testing

# Target parameters, physical boundary conditions (available space, coolant, powering system...) are to be definded for further studies.