FCC-eh Interaction Region

Emilia Cruz

September 21, 2015
The LHeC aims to implement a new ERL to circulate electrons and collide them with one of the proton beams of the LHC.

Increase Luminosity\(5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}\) in IP1 (ATLAS) and IP5 (CMS).

Energy \(\sqrt{s} = 1.2 \text{ TeV}\) 4 times higher Luminosity \(10^{33} \text{ cm}^{-2} \text{s}^{-1}\) 100 higher as HERA.
The LHeC ERL in the FCC-eh context:

- Use electron from LHeC ERL to collide with one the proton beams of the FCC.
- FCC-eh aims to work parallel to FCC-hh, just like LHeC aims to works alongside HL-LHC.
Scaling to FCC parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Protons</th>
<th>Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy [GeV]</td>
<td>7000 50000</td>
<td>60</td>
</tr>
<tr>
<td>Luminosity ([10^{33} \text{cm}^{-2}\text{s}^{-1}])</td>
<td>± 6.8/8.2</td>
<td></td>
</tr>
<tr>
<td>Normalized emittance (\gamma \varepsilon_{x,y}) [(\mu\text{m})]</td>
<td>3.75 2.2</td>
<td>50 -> 20/10</td>
</tr>
<tr>
<td>IP beta function (\beta^*_{x,y}) [mm]</td>
<td>100-150</td>
<td>120 -> 36/72</td>
</tr>
<tr>
<td>RMS IP beam size (\sigma^*_{x,y}) [(\mu\text{m})]</td>
<td>7 2.5</td>
<td>7 2.5</td>
</tr>
<tr>
<td>Beam current [mA]</td>
<td>860 500</td>
<td>6.5 15</td>
</tr>
<tr>
<td>Bunch spacing [ns]</td>
<td>25 (50) 25</td>
<td>25 (50) 25</td>
</tr>
<tr>
<td>Bunch population ([10^{10}])</td>
<td>17 10</td>
<td>0.1 (0.2) 0.23</td>
</tr>
<tr>
<td>Effective crossing angle</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

D. Schulte’s Talk
IR Design Challenges

• Challenging part of the design of any accelerator. Has to meet requirements from both the detector and the accelerators.

• Smaller beam sizes, tight constraints.

• Competing criteria is found and compromises need to be taken.

• Find the best design that will optimize the luminosity with less impact on the accelerator.
• Aim of the interaction region design: Collide one of the proton beams with the electron beam from the ERL while the other proton beam bypasses the interaction.

• LHeC has to work alongside HL-LHC and built on existing IR2, designed for a different experiment.
• FCC-he can be designed for the required purposes.
Interaction Region

General Design of the IR:

<table>
<thead>
<tr>
<th>IP</th>
<th>Inner Triplet</th>
<th>Separation Dipoles</th>
<th>Matching Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2 Q3</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 Q4</td>
<td>Q5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q7</td>
</tr>
</tbody>
</table>

![Diagram of Interaction Region]

\[
L = \frac{1}{4\pi\epsilon} \frac{N_{b,p}}{\epsilon_p} \frac{1}{\beta_p^*} I_e H_{hg} H_D
\]
Interaction Region

General Design of the IR:

<table>
<thead>
<tr>
<th>IP</th>
<th>Inner Triplet</th>
<th>Separation Dipoles</th>
<th>Matching Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td></td>
<td>Q5</td>
</tr>
<tr>
<td>D2</td>
<td>Q6</td>
<td></td>
<td>Q7</td>
</tr>
</tbody>
</table>

\[
L = \frac{1}{4\pi e} \frac{N_{b,v}}{\varepsilon_p} \left(\frac{1}{\beta_p^*} \right) L H_{hg} H_D
\]

Luminosity inversely proportional to the size of the beam of the interaction point.
General Design of the IR:

<table>
<thead>
<tr>
<th>IP</th>
<th>Inner Triplet</th>
<th>Separation Dipoles</th>
<th>Matching Section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 Q2 Q3</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 Q4</td>
<td>Q5 Q6 Q7</td>
</tr>
</tbody>
</table>

\[L = \frac{1}{4\pi e} \frac{N_{b,v}}{\epsilon_p} \frac{1}{\beta_p} \]

Implementation of new inner triplet Q1-Q3

We need:
- \(\beta^* = 10 \text{ cm} \)
 \((10^{33} \text{ cm}^2\text{s}^{-1}) \)
- \(\beta^* = 5 \text{ cm} \)
 \((10^{34} \text{ cm}^2\text{s}^{-1}) \)

Luminosity inversely proportional to the size of the beam of the interaction point.
Interaction Region

General Design of the IR:

Interaction Region

<table>
<thead>
<tr>
<th>IP</th>
<th>Inner Triplet</th>
<th>Separation Dipoles</th>
<th>Matching Section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 Q2 Q3</td>
<td>D1</td>
<td>D2 Q4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q5 Q6 Q7</td>
</tr>
</tbody>
</table>

Implementation of new inner triplet Q1-Q3

We need:
- $\beta^*=10\text{ cm} \quad (10^{33}\text{ cm}^2\text{s}^{-1})$
- $\beta^*=5\text{ cm} \quad (10^{34}\text{ cm}^2\text{s}^{-1})$

Luminosity inversely proportional to the size of the beam of the interaction point.

$$L = \frac{1}{4\pi e} \frac{N_b}{\varepsilon_p} \frac{1}{\beta_p} L H_{hg} H_D$$

SEVERE LIMITATIONS

1. Quadrupole apertures
2. Quadrupole gradients
3. Limits of the chromatic correction scheme
ATS Scheme HL-LHC+LHeC

HL-LHC

HL-LHC + LHeC

IP1/IP5
β*=15 cm

IP2
β*=10 m

IP1/IP5
β*=15 cm

IP2
β*=10 cm

14/04/2016

FCC Week
Fcc-eh design presents some advantages:

1. IR can be design to be adapted to luminosity requirements (Not on a previous design).
2. More relaxed β^* (15 cm instead of 10 cm), but higher energy.
Interaction Region

Fcc-eh design presents some advantages:

1. IR can be design to be adapted to luminosity requirements (Not on a previous design).
2. More relaxed β^* (15 cm instead of 10 cm)

Comparisson with FCC-hh:

On-going work for β^* below 20 cm.
FCC-he might provide more flexibility in L^* (FCC-hh detector requires $L^* > 45$ m)
Main considerations for implementing the new inner triplet:
1. Control of the chromaticity \rightarrow Keep L^* small.
2. Synchrotron radiation coming from the electron beam \rightarrow Careful design of the magnets.
The design of the magnets for the LHeC included a normal-aperture to focus the proton beam and a field-free aperture for the electron and unfocussed proton beam.

Consideration of the magnets for the LHeC included the design of a half quadrupole for Q1 given the short distance between the proton beam and the electron beam.
The design of the magnets for the LHeC included a normal-aperture to focus the proton beam and a field-free aperture for the electron and unfocussed proton beam.

Consideration of the magnets for the LHeC included the design of a half quadrupole for Q1 given the short distance between the proton beam and the electron beam.

This design presents stray fields in the ‘field-free’ region difficulting to match the electron beam. Also, beam is off-axis so there is a deflection on the focussed proton beam.
The albedo backscatter radiation from sufficiently high critical energy synchrotron radiation is very difficult to collimate close to the detector.

Experience from HERA -> Luminosity was limited by tolerable limits of experimental backgrounds in the detectors

B. Parker
Magnet design planned for eRHIC IR.

With the use of outer coils a reduced field region is created inside the quadrupole -> Sweet Spot.

Possible new design for the Q1

Poster TUPMB042, “Sweet Spot Designs for Interaction Region Septum Magnets in IPAC 2016.”
The sweet spot quadrupole has double the gradient for a given aperture, or double the aperture for the same gradients. Leaving more space to put masks through the whole length of Q1.

The baseline LHeC IR geometry is particularly challenging as it requires very wide Sweet Spot regions to locate both the electron and proton beams.

B. Parker, LHeC Workshop, Chavannes, 2015.
Conclusions

• FCC-eh could work parallel to FCC-hh to have a complementary set of experiments.
• The IR can be designed to accommodate luminosity requirements. More versatility than the LHeC.
• The synchrotron radiation coming from bending the electron could be reduce by increasing L*.
• A new design for the Q1 proposed by B. Parker would allow to increase the aperture to control the backscattering radiation; however, it does become difficult to create a low-field Sweet Spot over too large a horizontally extended region.
Thank you!