
Future Circular Collider Study

Status and Parameter Update

M. Benedikt

gratefully acknowledging input from FCC coordination group global design study team and all other contributors

Outline

Introduction

Motivation and Scope

Study Timeline

Study Progress

Implementation and Layout

Machine parameters and optics

Machine-Detector Activities, Technologies

FCC Collaboration Status Outlook

FCC Strategic Motivation

European Strategy for Particle Physics 2013:

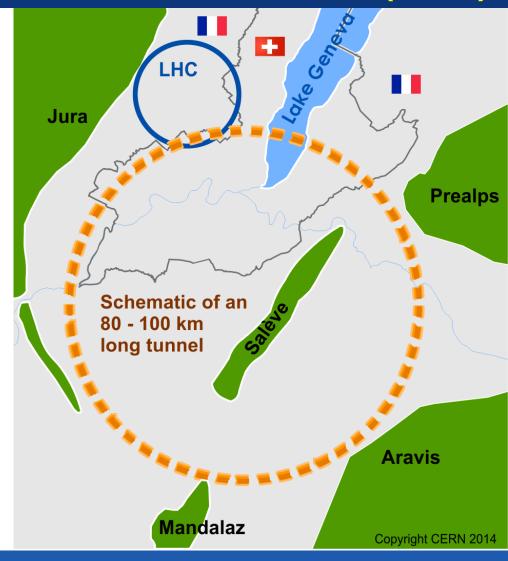
"...to propose an ambitious post-LHC accelerator project.....,
CERN should undertake design studies for accelerator projects in a
global context,...with emphasis on proton-proton and electronpositron high-energy frontier machines....coupled to a vigorous
accelerator R&D programme, including high-field magnets and highgradient accelerating structures,...."

US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

ICFA statement 2014:

".... ICFA supports studies of energy frontier circular colliders and encourages global coordination...."


Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2019)

International FCC collaboration (CERN as host lab) to study:

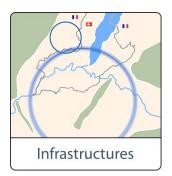
pp-collider (FCC-hh)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV pp in 100 km

- 80-100 km tunnel infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential first step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

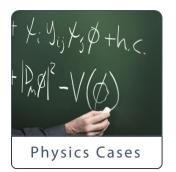
FCC Scope: Accelerator and Infrastructure

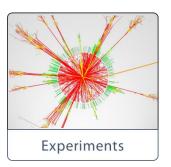
FCC-hh: 100 TeV pp collider as long-term goal

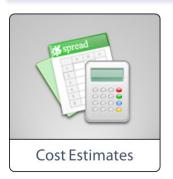

→ defines infrastructure needs

FCC-ee: e+e- collider, potential intermediate step

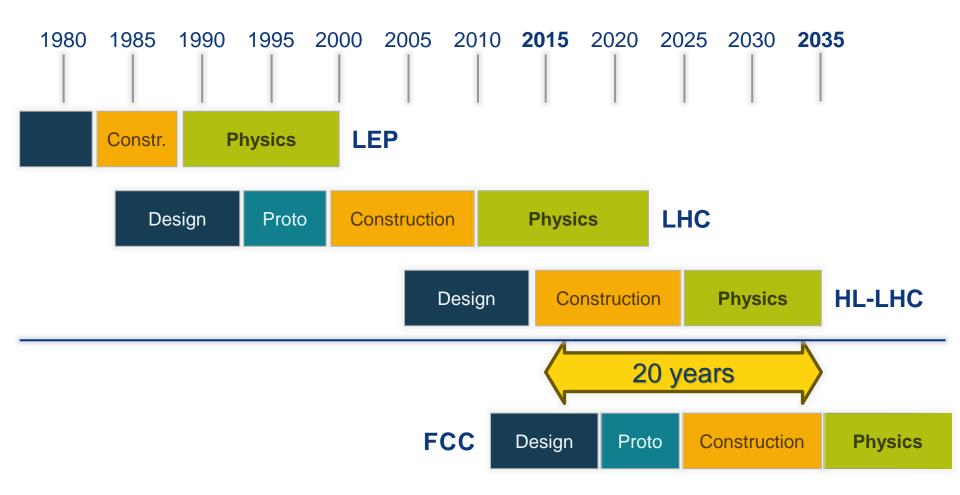
HE-LHC: based on FCC-hh technology


key technologies
pushed in dedicated R&D programmes, e.g.
16 Tesla magnet program
SRF technologies and RF power sources

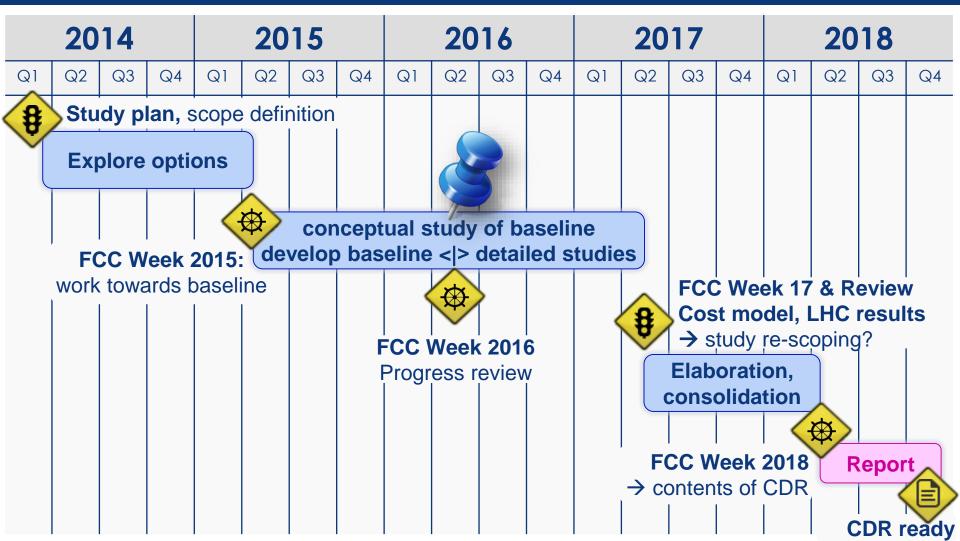

tunnel infrastructure in Geneva area, linked to CERN accelerator complex; site-specific, as requested by European strategy


FCC Scope: Physics & Experiments

physics opportunities for hh, ee and he discovery potentials

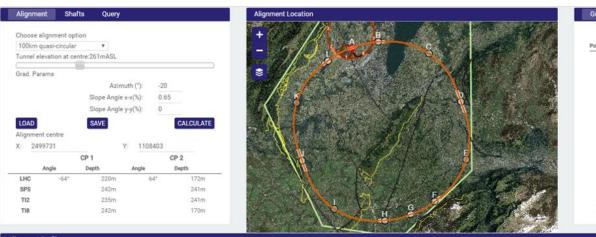

experiment concepts for hh, ee and he machine Detector Interface studies concepts for **worldwide data services**

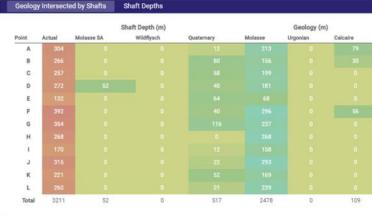
overall cost model;
cost scenarios for collider options
including infrastructure and injectors;
implementation and governance models


CERN Circular Colliders & FCC

Now is the time to plan for the period 2035 – 2040

CDR Study Time Line





Status and Progress

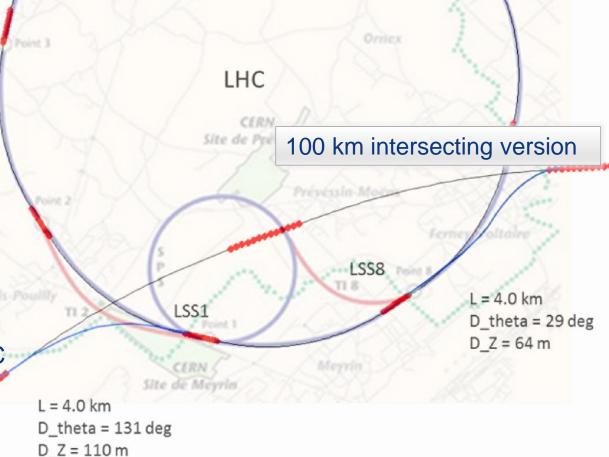
Progress on site investigations

90 – 100 km fits geological situation well

- Review confirmed focus on 100 km, planar version
- LHC suitable as potential injector
- The 100 km version, intersecting LHC, is being studied now in more detail

FCC-hh injector studies

Injector options:

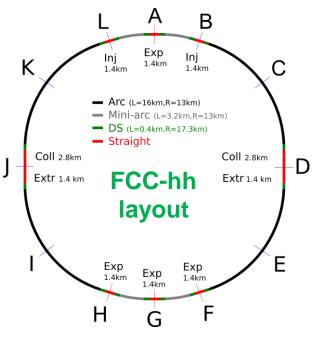

- SPS → LHC → FCC
- SPS/SPS_{upgrade} \rightarrow FCC
- SPS -> FCC booster → FCC

Current baseline:

- injection energy 3.3 TeV LHC
- confirmed by review

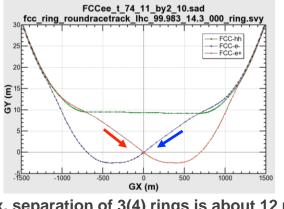
Alternative options:

- Injection around 1.5 TeV
- compatible with: SPS_{upgrade}, LHC, FCC booster




Common layouts for hh & ee

Common RF (tt)


FCC-ee 1, FCC-ee 2,

FCC-ee booster (FCC-hh footprint)

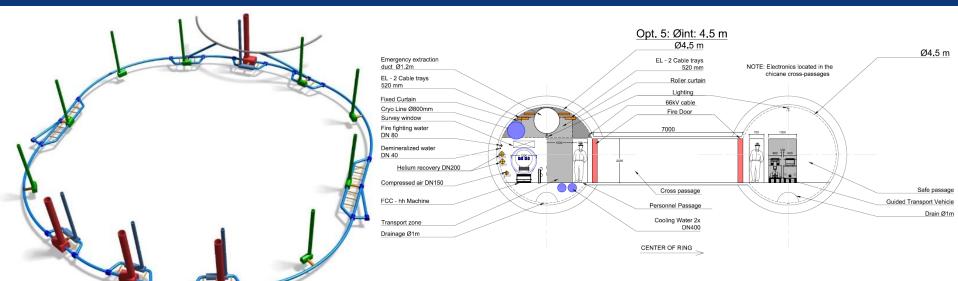
11.9 m J

30 mrad

ee Booster

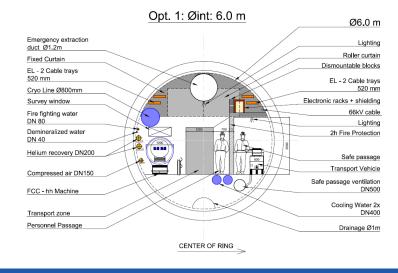
9.4 m

Max. separation of 3(4) rings is about 12 m: wider tunnel or two tunnels are necessary around the IPs, for ±1.2 km.


- 2 main IPs in A, G for both machines
- asymmetric IR optic/geometry for ee to limit synchrotron radiation to detector

Common

RF (tt)



Further CE and TI optimisation

More detailed studies launched on

- CE: single vs. double tunnels
- · CE: caverns, shafts, underground layout
- technical infrastructures
- safety, access
- transport, integration, installation
- operation aspects

hadron collider parameters

parameter	FCC-hh		SPPC	HE-LHC*	(HL) LHC	
collision energy cms [TeV]		100	71.2	>25	14	
dipole field [T]	16		20	16	8.3	
circumference [km]	100		54	27	27	
# IP	2 main & 2		2	2 & 2	2 & 2	
beam current [A]	0.5		1.0	1.12	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 1 (0.2)		2	2.2	(2.2) 1.15	
bunch spacing [ns]	25	25 (5)	25	25	25	
beta* [m]	1.1	0.3	0.75	0.25	(0.15) 0.55	
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	12	>25	(5) 1	
events/bunch crossing	170	<1020 (204)	400	850	(135) 27	
stored energy/beam [GJ]		8.4	6.6	1.2	(0.7) 0.36	
synchrotr. rad. [W/m/beam]		30	58	3.6	(0.35) 0.18	

FCC-hh operation & luminosity

5 year long operation periods

- 3.5 years operation periods with
 - 1 year HW comm., MDs, short stops
 - 2.5 years lumi. run with 70% availability
- 1.5 year shutdown

2 periods at baseline parameters (10 yrs)

- Peak luminosity 5x10³⁴cm⁻²s⁻¹
- Total of 2.5ab⁻¹ (per detector)

luminosity [10^{34} cm⁻²s⁻¹] radiation damping: τ ~1 h 25 20 15 10 5 10 15 20 time [h] phase 1: β *=1.1 m, ΔQ_{tot} =0.01, t_{ta} =5 h, 250 fb⁻¹/ year phase 2: β *=0.3 m, ΔQ_{tot} =0.03, t_{ta} =4 h, 1 ab⁻¹/ year

3 periods at ultimate parameters (15 yrs)

- Peak luminosity <=30x10³⁴cm⁻²s⁻¹
- 5ab⁻¹ per period total of 15ab⁻¹

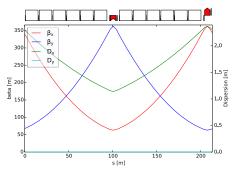
O(20) ab⁻¹ integrated luminosity/experiment

consistent with physics goal: 20 ab⁻¹ in total

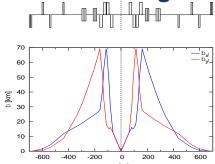
Detectors must sustain a total of >20ab⁻¹ and >5ab⁻¹ between maintenance stops Machine design to support 3.5 year operation periods w/o warm up or long stops

Physics prospects

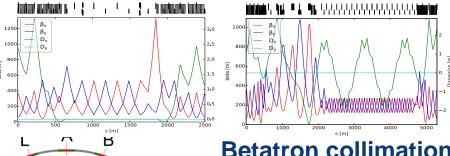
Physics at the FCC-hh


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

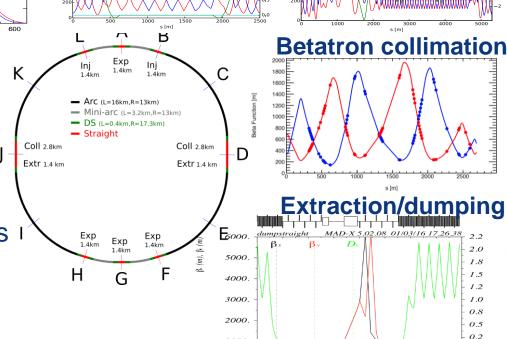
- Volume 1: SM processes (238 pages)
- Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)
 - will be published as CERN yellow report
 - paper copies available at registration desk



FCC-hh full-ring optics design



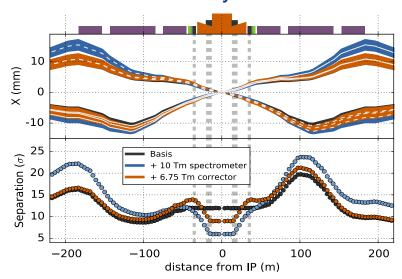
Interaction region

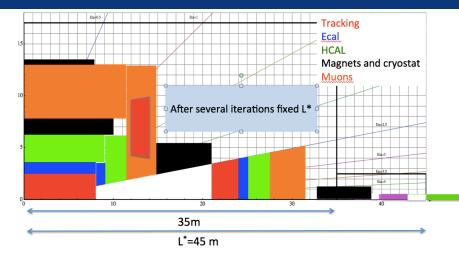

Injection with RF

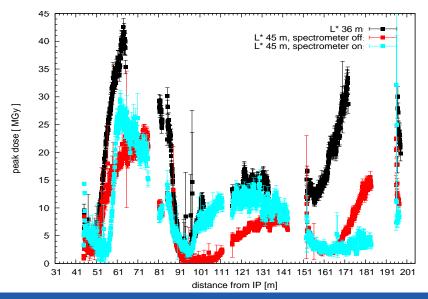
Full ring optics design available as basis for:

- beam dynamics studies
- optimisation of each insertion
- definition of system specifications (apertures, etc.)
- improvement of baseline optics and layout

1000.

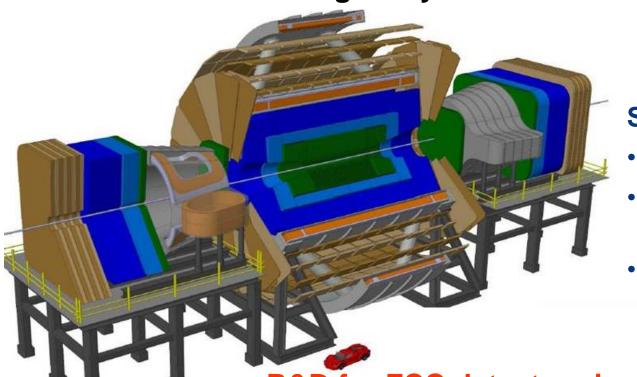

0.0




FCC-hh MDI status

Design of interaction region

- consistent for machine and detector
 - L*=45 m
 - integrated spectrometer and compensation dipoles
- new optics design with longer triplet with large aperture
 - should help for collision debris
 - more beam stay clear



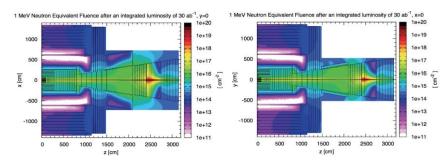
Detector Concepts for 100 TeV pp

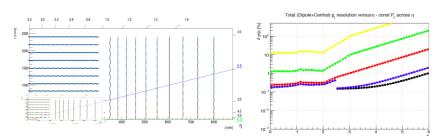
A B=6 T, R=6 m solenoid with shielding coil and 2 dipoles has been engineered in detail.

Different alternative magnet systems are also being explored.

Some design challenges:

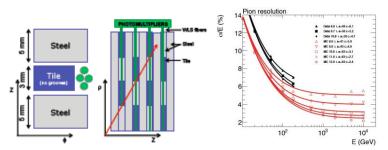
- large η acceptance
- radiation levels of >50 x LHC Phase II
- pileup of ~1000


R&D for FCC detectors is a natural continuation of the R&D for LHC Phase II upgrade


Detector studies & simulation framework

- Detector studies well under way for hh and ee
- Parametrized detector performance model (DELPHES) available and integrated in FCC software framework for physics simulations

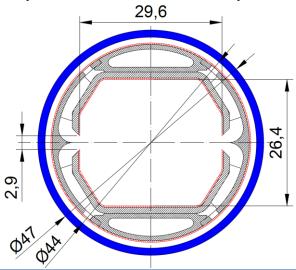
https://twiki.cern.ch/twiki/bin/view/FCC/FccPythiaDelphes

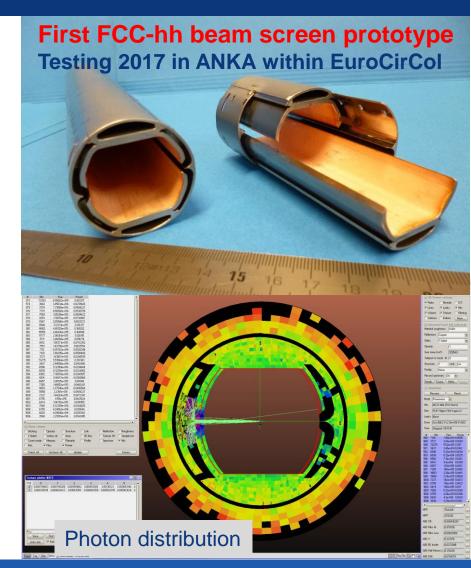

Radiation simulations, shielding requirements

Tracker resolution, occupancy, data rate studies

Muon system performance & requirement studies

Calorimeter resolution, containment studies

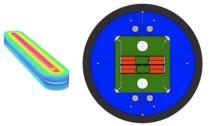

Synchrotron radiation/beam screen

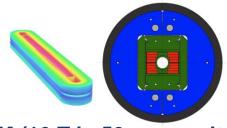

High synchrotron radiation load of protons @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs

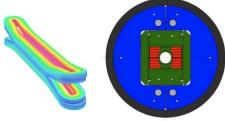
New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- avoids photo-electrons, helps vacuum




CERN & EuroCirCol 16T programs

Main Milestones of the FCC Magnet Program 2016 - 2019


Milestone	Description	15	2016	20)17	2018	1 2	2019	202	.0 21
M0	High J _c wire development with industry									
M1	Supporting wound conductor test program									
M2	Design & manufacture 16T ERMC with existing wire									
M3	Design & manufacture 16 T RMM with existing wire									
M4	Design & manufacture 16T demonstrator magnet									
M5	Procurement of enhanced high J _c wire									
M6	EuroCirCol design 16T accelerator quality model									
	Manufacture and test of the 16 T EuroCirCol model									

end 2017

Demonstrator (16 T, 50 mm gap) end 2018

Nb₃Sn conductor program

Nb₃Sn conductor is one of the major cost and performance factors for FCC-hh and must be given highest attention

- Goals: J_c increase (16 T, 4.2 K) > 1500 A/mm², significant cost reduction
- Actions ongoing and planned (in addition to activities at CERN):
 - Purchase of wires in Europe, US
 - Industrial R&D in Europe
 - Collaboration agreements with KEK, Russia, Korea (in preparation),
 to stipulate conductor development with regional industry
 - Collaborations with several European Universities and Research Centres
- Strong industrial R&D program is highly desired also in the US

High-Energy LHC

FCC study continues effort on high-field collider in LHC tunnel

2010 EuCARD Workshop Malta; Yellow Report CERN-2011-1

CERN-201:-005
BECARD-COE-201-001
R April 2011

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE
CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

EuCARD-AceNet-EuroLumi Workshop
The High-Energy Large Hadron Collider

Villa Bighi, Malta, 14–16 October 2010

Proceedings
Editors: E. Toolesco
E. Zimmermann

EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider - HE-LHC10, E. Todesco and F. Zimmermann (eds.), EuCARD-CON-2011-001; arXiv:1111.7188; CERN-2011-003 (2011)

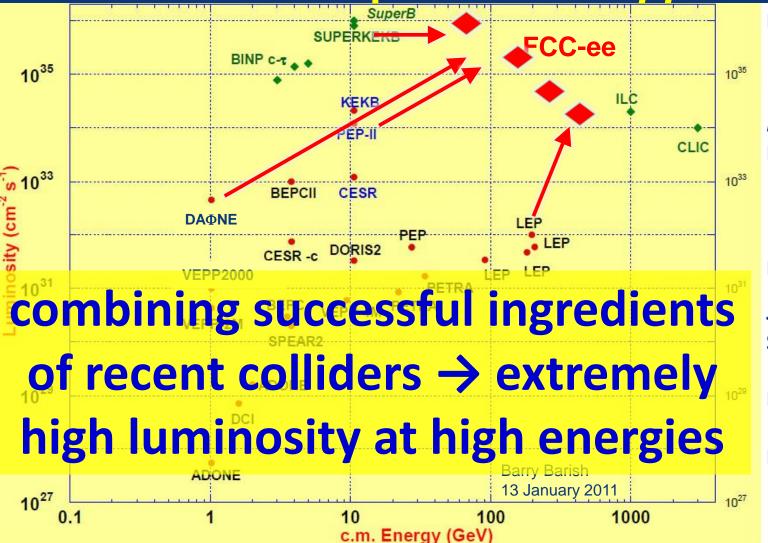
- based on 16-T dipoles developed for FCC-hh
- extrapolation of other parts from the present (HL-)LHC and from FCC developments

lepton collider parameters

parameter		FCC-e	CEPC	LEP2				
Physics working point	Z		ww	ZH	tt _{bar}	Н		
energy/beam [GeV]	45.6		80	120	175	120	105	
bunches/beam	30180	91500	5260	780	81	50	4	
bunch spacing [ns]	7.5	2.5	50	400	4000	3600	22000	
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	3.8	4.2	
beam current [mA]	1450	1450	152	30	6.6	16.6	3	
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	2.0	0.0012	
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.1	3.34	
synchrotron power [MW]	100				103	22		
RF voltage [GV]	0.4	0.2	8.0	3.0	10	6.9	3.5	

identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings CEPC, LEP: single beam pipe



FCC-ee luminosity per IP

FCC-ee exploits lessons & recipes from past e⁺e⁻ and pp colliders

LEP:
high energy
SR effects

B-factories:

KEKB & PEP-II:

high beam

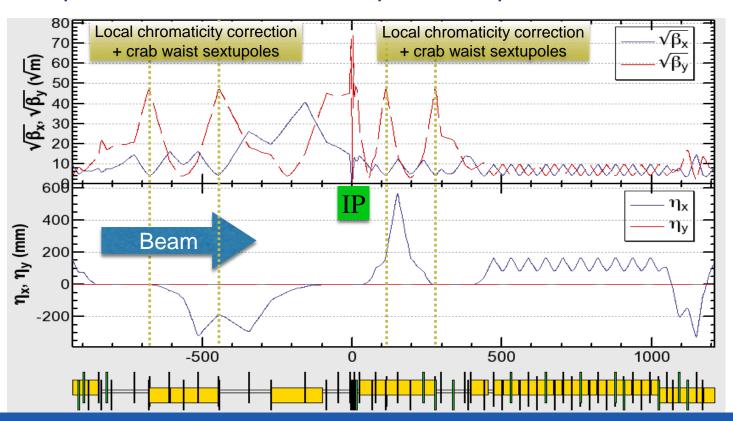
currents

top-up injection

DAFNE: crab waist

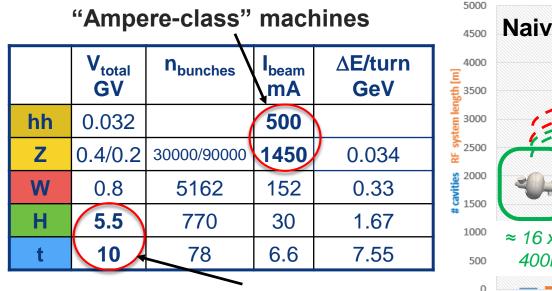
Super B-factories S-KEKB: low β_v^*

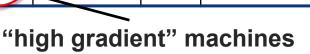
KEKB: e⁺ source

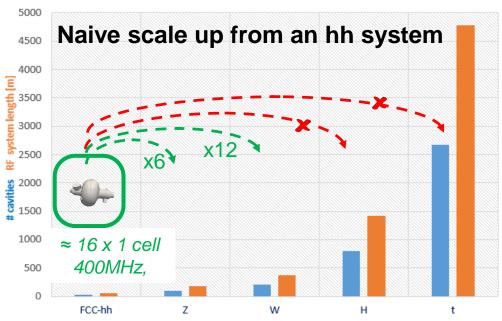

HERA, LEP, RHIC: spin gymnastics

FCC-ee optics design

Optics design for all working points achieving baseline performance Interaction region: asymmetric optics design

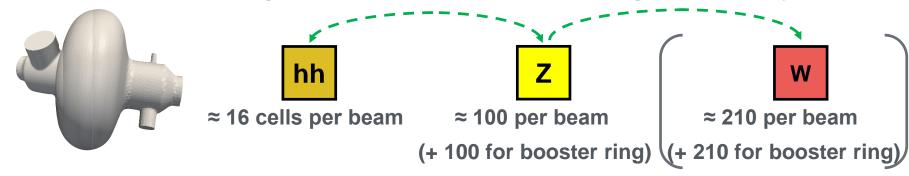

- Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- Dynamic aperture & momentum acceptance requirements fulfilled at all WPs





RF system requirements

Very large range of operation parameters


- Voltage and beam current ranges span more than factor > 10²
- No well-adapted single RF system solution satisfying requirements

RF system R&D lines

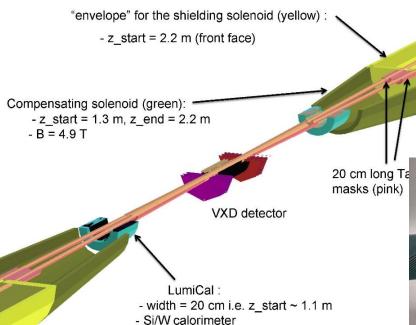
400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-H, ee-tt and ee-W

- Baseline options 400 MHz Nb/Cu @4.5 K, ◀—▶ 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components

FCC-ee MDI optimisation


100 mrad | 20

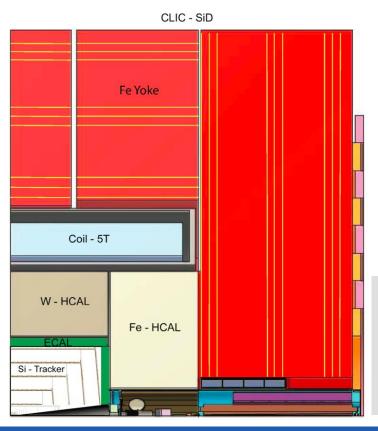
MDI work started with optimization of

I*, IR quadrupole design

compensation & shielding solenoid

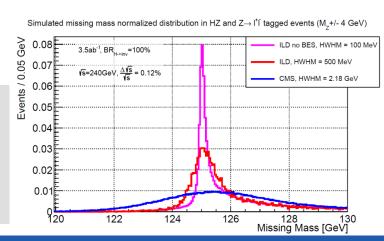
SR masking and chamber layout

BINP prototype IR quadr.


2 cm aperture, 100 T/m

Design of FCC-ee Detectors

Adapted from ILC/CLIC detector: Experience with LEP detectors and ~20 years R&D for LC


Some physics differences

- -- Lower maximum energy 400GeV vs. >1000 GeV
- → Momentum & energy resolution requirements
- -- Higher statistics need matching systematics

Some technical differences

- -- High physics rate: 100 kHz Zs, must keep all.
- -- No bunching → cooling issues
- -- better definition of beam energy and lower beam induced backgrounds

Exemple:
Improved Higgs
missing mass
due to lower σ_{Ecm} @ FCC-ee →

FCC International Collaboration

- 74 institutes
- 26 countries + EC

Status: April, 2016

FCC Collaboration Status

74 collaboration members & CERN as host institute, March 2016

ALBA/CELLS, Spain

Ankara U., Turkey

U Belgrade, Serbia

U Bern, Switzerland

BINP, Russia

CASE (SUNY/BNL), USA

CBPF, Brazil

CEA Grenoble, France

CEA Saclay, France

CIEMAT, Spain

Cinvestav, Mexico

CNRS, France

CNR-SPIN, Italy

Cockcroft Institute, UK

U Colima, Mexico

UCPH Copenhagen, Denmark

CSIC/IFIC, Spain

TU Darmstadt, Germany

TU Delft, Netherlands

DESY, Germany

DOE, Washington, USA

ESS, Lund, Sweden

TU Dresden, Germany

Duke U, USA

EPFL, Switzerland

UT Enschede, Netherlands

U Geneva, Switzerland

Goethe U Frankfurt, Germany

GSI, Germany

GWNU, Korea

U. Guanajuato, Mexico

Hellenic Open U, Greece

HEPHY, Austria

U Houston, USA

IIT Kanpur, India

IFJ PAN Krakow, Poland

INFN, Italy

INP Minsk, Belarus

U Iowa, USA

IPM, Iran

UC Irvine, USA

Istanbul Aydin U., Turkey

JAI, UK

JINR Dubna, Russia

FZ Jülich, Germany

KAIST, Korea

KEK, Japan

KIAS, Korea

King's College London, UK

KIT Karlsruhe, Germany

KU, Seoul, Korea

Korea U Sejong, Korea

U. Liverpool, UK

U. Lund, Sweden

MAX IV, Lund, Sweden

MEPhl, Russia

UNIMI, Milan, Italy

MIT, USA

Northern Illinois U, USA

NC PHEP Minsk, Belarus

U Oxford, UK

PSI, Switzerland

U. Rostock, Germany

RTU, Riga, Latvia

UC Santa Barbara, USA

Sapienza/Roma, Italy

U Siegen, Germany

U Silesia, Poland

TU Tampere, Finland

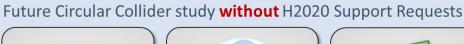
TOBB, Turkey

U Twente, Netherlands

TU Vienna, Austria

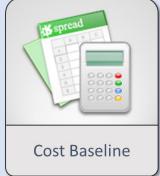
Wigner RCP, Budapest, Hungary

Wroclaw UT, Poland



EuroCirCol EU Horizon 2020 Grant

EC contributes with funding to FCC-hh study


- Launched in June 2016, is in full swing now and makes essential contributions to the FCC-hh work packages:
- Arc & IR optics design, 16 T dipole design, cryogenic beam vacuum system
 - Recognition of FCC Study by European Commission.

Resources provided and work carried out by worldwide collaboration.

Summary study status

- Consolidated parameter sets for FCC-hh and FCC-ee machines
- Complete optics baselines for FCC-hh and FCC-ee, beam dynamics compatible with parameter requirements
- Common footprint for both accelerator options
- First round of geology and implementation CE and TI studies completed
- 6 reviews to confirm implementation, layout, optics, hh-injection & rf work
- Convergence on main MDI parameters
- Detector studies ongoing
- Framework available for physics and detector simulations
- FCC-hh physics report being published
- Technologies:
 - SC magnets, cryogenic beam vacuum and cryogenics programs well under way
 - RF, feedback, materials, protection, beam transfer, beam diagnostics moving into focus

Outlook 2016/17

- Further baseline improvement (insertions optimization, MDI optimization, power optimization, ...)
- Launch HE-LHC conceptual design effort
- Functional specifications of elements for technical WPs and TI to enable conceptual design work
- Enforce technical infrastructure concepts, integration, installation, safety for machines & detectors
- Continue detector simulations, detector design work and definition of infrastructure requirements
- Development of TDR and construction schedules as basis for cost estimates and governance models
- Study review at FCCW 2017, to freeze baselines

The FCC Week 2016 should:

- Stimulate exchange between participants of all study areas
- Strengthen the collaboration network
- Allow fruitful discussions to develop solutions for our common goals
- Have a Great Week!