Future Circular Collider Study

Status and Parameter Update M. Benedikt gratefully acknowledging input from FCC coordination group global design study team and all other contributors

FCC

LHC

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

Outline

Introduction

Motivation and Scope Study Timeline

Study Progress

Implementation and Layout

Machine parameters and optics

Machine-Detector Activities, Technologies

FCC Collaboration Status Outlook

FCC Strategic Motivation

European Strategy for Particle Physics 2013:

"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electronpositron high-energy frontier machines....coupled to a vigorous accelerator R&D programme, including high-field magnets and highgradient accelerating structures,...."

• US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

ICFA statement 2014:

".... ICFA supports studies of energy frontier circular colliders and encourages global coordination....."

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2019)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area
- e+e⁻ collider (FCC-ee) as potential first step
- p-e (FCC-he) option
- HE-LHC with FCC-hh technology

FCC Scope: Accelerator and Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step HE-LHC: based on FCC-hh technology

R&D Programs

key technologies

pushed in dedicated R&D programmes, e.g. 16 Tesla magnet program SRF technologies and RF power sources

tunnel infrastructure in Geneva area, linked to CERN accelerator complex; **site-specific,** as requested by European strategy

FCC Scope: Physics & Experiments

physics opportunities for hh, ee and he discovery potentials

experiment concepts for hh, ee and he machine Detector Interface studies concepts for **worldwide data services**

overall cost model;

cost scenarios for collider options including infrastructure and injectors ; **implementation and governance** models

CERN Circular Colliders & FCC

Now is the time to plan for the period 2035 – 2040

CDR Study Time Line

Status and Progress

Progress on site investigations

Alignment Shafts Query Alignment Location						G	eology I	Intersecte	d by Shafts	Shaft Depths						
Choose alignment option				+0//					Net	Actual	Molassa SA	Shaft Depth (m)	Quaternary	Molama	Geology (r	n) Calcale
Turnel elevation	roular +				A CARLON	1000			A A	Actual	MOIDSSE 3A	woonysch	Quaternary	Motasse	orgonian	Cacare
Tunnel elevatio	1 at centre.20 IMASL			president and a start	O CONSTRUCTION .			4	^							
Grad. Params					Maria Lines & A				8							-30
	A7)	muth (*):	20	Carlos Ales 1					с							0
	Slope Ang	le x-x(%): 0	.65			- 1 · 1	A Section		D							
	Slope Ang	le v-v(%): 0			1 Sector Astron	< // ·			Ε							
LOAD	SAVE		CALCULATE						F		0					56
Alignment centr	Alignment centre				A A A CAME A		A Star Providence		G							0
X: 2499731 Y: 1108403					The second for the		A Stratt State		н							
	CP 1		CP 2	18	10 /00	1			1							
Angle	Depth	Angle	Depth		Al		2	and a second	J							
LHC	-64* 220m	64*	172m		the Contract	S 32 2 1	a set and a set		к							
SPS	242m		241m			F	Production 1 100		1							
TI2	235m		241m			2 213	and the second			200				1443		
TI8	242m		170m		H				Total	3211	52	0	517	2478	0	109
				A too		1 Participant	A State of the second s	12								

- 90 100 km fits geological situation well
- Review confirmed focus on 100 km, planar version
- LHC suitable as potential injector
- The 100 km version, intersecting LHC, is being studied now in more detail

FCC-hh injector studies

Common layouts for hh & ee

Solution Further CE and TI optimisation

More detailed studies launched on

- CE: single vs. double tunnels
- CE: caverns, shafts, underground layout
- technical infrastructures
- safety, access
- transport, integration, installation
- operation aspects

hadron collider parameters

parameter	l	FCC-hh	SPPC	HE-LHC* *tentative	(HL) LHC	
collision energy cms [TeV]		100	71.2	>25	14	
dipole field [T]		16	20	16	8.3	
circumference [km]		100	54	27	27	
# IP	2	main & 2	2	2 & 2	2 & 2	
beam current [A]		0.5	1.0	1.12	(1.12) 0.58	
bunch intensity [10 ¹¹]	1 1 (0.2)		2	2.2	(2.2) 1.15	
bunch spacing [ns]	25 25 (5)		25	25	25	
beta* [m]	1.1 0.3		0.75	0.25	(0.15) 0.55	
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5 20 - 30		12	>25	(5) 1	
events/bunch crossing	170 <1020 (204)		400	850	(135) 27	
stored energy/beam [GJ]	8.4		6.6	1.2	(0.7) 0.36	
synchrotr. rad. [W/m/beam]	30		58	3.6	(0.35) 0.18	

FCC-hh operation & luminosity

5 year long operation periods

- 3.5 years operation periods with
 - 1 year HW comm., MDs, short stops
 - 2.5 years lumi. run with 70% availability
- 1.5 year shutdown

2 periods at baseline parameters (10 yrs)

- Peak luminosity 5x10³⁴cm⁻²s⁻¹
- Total of 2.5ab⁻¹ (per detector)

3 periods at ultimate parameters (15 yrs)

- Peak luminosity <=30x10³⁴cm⁻²s⁻¹
- 5ab⁻¹ per period total of 15ab⁻¹
- O(20) ab⁻¹ integrated luminosity/experiment

Detectors must sustain a total of >20ab⁻¹ and >5ab⁻¹ between maintenance stops Machine design to support 3.5 year operation periods w/o warm up or long stops

consistent with physics goal: 20 ab⁻¹ in total

Physics prospects

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

- Volume 1: SM processes (238 pages)
- · Volume 2: Higgs and EW symmetry breaking studies (175 pages)
- Volume 3: beyond the Standard Model phenomena (189 pages)
- · Volume 4: physics with heavy ions (56 pages)
- Volume 5: physics opportunities with the FCC-hh injectors (14 pages)
 - will be published as CERN yellow report
 - paper copies available at registration desk

FCC-hh full-ring optics design

FCC-hh MDI status

Design of interaction region

- consistent for machine and detector
 - L*=45 m
 - integrated spectrometer and compensation dipoles
- new optics design with longer triplet with large aperture
 - should help for collision debris
 - more beam stay clear

Detector Concepts for 100 TeV pp

A B=6 T, R=6 m solenoid with shielding coil and 2 dipoles has been engineered in detail.

Different alternative magnet systems are also being explored.

Some design challenges:

- large η acceptance
- radiation levels of >50 x LHC Phase II
- pileup of ~1000

R&D for FCC detectors is a natural continuation of the R&D for LHC Phase II upgrade

- Detector studies well under way for hh and ee
- Parametrized detector performance model (DELPHES) available and integrated in FCC software framework for physics simulations https://twiki.cern.ch/twiki/bin/view/FCC/FccPythiaDelphes

Radiation simulations, shielding requirements

Tracker resolution, occupancy, data rate studies

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

Muon system performance & requirement studies

Calorimeter resolution, containment studies

Synchrotron radiation/beam screen

High synchrotron radiation load of protons @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- avoids photo-electrons, helps vacuum

CERN

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

First FCC-hh beam screen prototype Testing 2017 in ANKA within EuroCirCol

CERN & EuroCirCol 16T programs

ee he

- Nb₃Sn conductor is one of the major cost and performance
- factors for FCC-hh and must be given highest attention
- Goals: J_c increase (16 T, 4.2 K) > 1500 A/mm², significant cost reduction
- Actions ongoing and planned (in addition to activities at CERN):
 - Purchase of wires in Europe, US
 - Industrial R&D in Europe
 - Collaboration agreements with KEK, Russia, Korea (in preparation), to stipulate conductor development with regional industry
 - Collaborations with several European Universities and Research Centres
- Strong industrial R&D program is highly desired also in the US

High-Energy LHC

FCC study continues effort on high-field collider in LHC tunnel 2010 EuCARD Workshop Malta; Yellow Report CERN-2011-1

EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider - HE-LHC10, E. Todesco and F. Zimmermann (eds.), EuCARD-CON-2011-001; arXiv:1111.7188; CERN-2011-003 (2011)

- based on 16-T dipoles developed for FCC-hh
- extrapolation of other parts from the present (HL-)LHC and from FCC developments

lepton collider parameters

parameter		FCC-e	CEPC	LEP2			
Physics working point	Z		ww	ZH	tt _{bar}	Н	
energy/beam [GeV]	45.6		80	120	175	120	105
bunches/beam	30180	91500	5260	780	81	50	4
bunch spacing [ns]	7.5	2.5	50	400	4000	3600	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	3.8	4.2
beam current [mA]	1450	1450	152	30	6.6	16.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	2.0	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.1	3.34
synchrotron power [MW]	100					103	22
RF voltage [GV]	0.4	0.2	0.8	3.0	10	6.9	3.5

identical FCC-ee baseline optics for all energies

FCC-ee: 2 separate rings CEPC, LEP: single beam pipe

FCC-ee luminosity per IP

c.m. energy [GeV]

FCC-ee exploits lessons & recipes from past e⁺e⁻ and pp colliders

FCC-ee optics design

Optics design for all working points achieving baseline performance Interaction region: asymmetric optics design

- Synchrotron radiation from upstream dipoles <100 keV up to 450 m from IP
- Dynamic aperture & momentum acceptance requirements fulfilled at all WPs

Very large range of operation parameters

- Voltage and beam current ranges span more than factor > 10²
- No well-adapted single RF system solution satisfying requirements

RF system R&D lines

400 MHz single-cell cavities preferred for hh and ee-Z (few MeV/m)

- Baseline Nb/Cu @4.5 K, development with synergies to HL-LHC, HE-LHC
- R&D: power coupling 1 MW/cell, HOM power handling (damper, cryomodule)

400 or 800 MHz multi-cell cavities preferred for ee-H, ee-tt and ee-W

- Baseline options 400 MHz Nb/Cu @4.5 K, ◀—▶ 800 MHz bulk Nb system @2K
- R&D: High Q₀ cavities, coating, long-term: Nb₃Sn like components

FCC-ee MDI optimisation

Michael Benedikt 2nd FCC Week, Rome, April 2016

Design of FCC-ee Detectors

Adapted from ILC/CLIC detector: **Experience with LEP detectors** and ~20 years R&D for LC

CLIC - SiD

Some physics differences

- -- Lower maximum energy 400GeV vs. >1000 GeV
- → Momentum & energy resolution requirements
- -- Higher statistics need matching systematics

Some technical differences

- -- High physics rate: 100 kHz Zs, must keep all.
- -- No bunching \rightarrow cooling issues
- -- better definition of beam energy and lower beam induced backgrounds

- 74 institutes
- 26 countries + EC

Status: April, 2016

FCC Collaboration Status

74 collaboration members & CERN as host institute, March 2016

ALBA/CELLS, Spain Ankara U., Turkey U Belgrade, Serbia U Bern, Switzerland BINP, Russia CASE (SUNY/BNL), USA **CBPF**, Brazil **CEA Grenoble, France CEA Saclay, France** CIEMAT, Spain **Cinvestav, Mexico CNRS**, France **CNR-SPIN**, Italy **Cockcroft Institute, UK** U Colima, Mexico UCPH Copenhagen, Denmark CSIC/IFIC, Spain TU Darmstadt, Germany **TU Delft, Netherlands** DESY, Germany DOE, Washington, USA ESS, Lund, Sweden **TU Dresden, Germany** Duke U, USA **EPFL**, Switzerland

UT Enschede, Netherlands U Geneva, Switzerland Goethe U Frankfurt, Germany **GSI**, Germany **GWNU**, Korea U. Guanajuato, Mexico Hellenic Open U, Greece HEPHY, Austria U Houston, USA IIT Kanpur, India **IFJ PAN Krakow**. Poland **INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Aydin U., Turkey JAI, UK JINR Dubna, Russia FZ Jülich, Germany KAIST, Korea KEK, Japan **KIAS**, Korea King's College London, UK **KIT Karlsruhe, Germany**

KU. Seoul. Korea Korea U Sejong, Korea U. Liverpool. UK U. Lund, Sweden MAX IV, Lund, Sweden MEPhl, Russia **UNIMI**, Milan, Italy MIT, USA Northern Illinois U, USA NC PHEP Minsk, Belarus U Oxford, UK **PSI**, Switzerland U. Rostock, Germany RTU, Riga, Latvia UC Santa Barbara, USA Sapienza/Roma, Italy U Siegen, Germany U Silesia, Poland **TU Tampere, Finland** TOBB, Turkey U Twente, Netherlands TU Vienna, Austria Wigner RCP, Budapest, Hungary Wroclaw UT, Poland

EuroCirCol EU Horizon 2020 Grant

EC contributes with funding to FCC-hh study

- Launched in June 2016, is in full swing now and makes essential contributions to the FCC-hh work packages:
- Arc & IR optics design, 16 T dipole design, cryogenic beam vacuum system Recognition of FCC Study by European Commission.

Resources provided and work carried out by worldwide collaboration.

Summary study status

- Consolidated parameter sets for FCC-hh and FCC-ee machines
- Complete optics baselines for FCC-hh and FCC-ee, beam dynamics compatible with parameter requirements
- Common footprint for both accelerator options
- First round of geology and implementation CE and TI studies completed
- 6 reviews to confirm implementation, layout, optics, hh-injection & rf work
- Convergence on main MDI parameters
- Detector studies ongoing
- Framework available for physics and detector simulations
- FCC-hh physics report being published
- Technologies:
 - SC magnets, cryogenic beam vacuum and cryogenics programs well under way
 - RF, feedback, materials, protection, beam transfer, beam diagnostics moving into focus

Outlook 2016/17

- Further baseline improvement (insertions optimization, MDI optimization, power optimization, ...)
- Launch HE-LHC conceptual design effort
- Functional specifications of elements for technical WPs and TI to enable conceptual design work
- Enforce technical infrastructure concepts, integration, installation, safety for machines & detectors
- Continue detector simulations, detector design work
 and definition of infrastructure requirements
- Development of TDR and construction schedules as basis for cost estimates and governance models
- Study review at FCCW 2017, to freeze baselines

The FCC Week 2016 should:

- Stimulate exchange between participants of all study areas
- Strengthen the collaboration network
- Allow fruitful discussions to develop solutions for our common goals
- Have a Great Week!

