

Top-up injection schemes

M. Aiba, Á. Sáa Hernández, PSI With input from B. Goddard, K. Oide, Y. Papaphillipou, D. Shwartz, F. Zimmermann

> FCCee Week, Rome 14.04.2016

Introduction

- Top-up injection is essential because of very short luminosity life time
- Booster
 - Repetition <0.1 Hz
 - Top-up injection frequency <0.05 Hz (One booster filling two rings)
 - Emittance similar to the main ring emittance (Full energy booster)
 - Negligible collective effect for low charge in Booster
- Integrated luminosity vs Number of batches:
 - Higgs mode: Luminosity life time, tau=21 min
 - Assuming top-up injection at every 25 sec
- The number of batches of 2~4 would be optimum
 - Luminosity loss
 - Booster extraction kicker rise time / flat top
 - Collider ring injection kicker rise time / flat top
- Frequent top-up injection

 \rightarrow Need robust injection scheme!

(or Booster cycles to top-up all the bunches)

Boundary condition/Criterion

- Straight section = 1.5 km
- Booster emittance ~ Collider emittance (This presentation is dedicated to the tt mode with ε= 1.3 nm that is most difficult case)
- Septum thickness = 5 mm (~3 mm + mechanical tolerance) or 200 μm with a wire septum (20~30 μm wire + mechanical tolerance)
- Clearance = $5\sigma (4\sigma + 1\sigma \text{ tolerance})$
- Assume dynamic aperture available ~15 σ / ~5 σ (on energy / 2% off energy)

Dynamic aperture in X-V plane Courtesy of K. Oide

Dynamic aperture in X-dP/P plane

M. Benedikt et al., arXiv, "Status and Challenges for FCC-ee" Figure 5 by P. Piminov and A. Bogomyagkov

Top-up injection schemes

• Several top-up schemes

On-energy injection → Separation in transverse phase space

Off-energy injection

 \rightarrow Separation in longitudinal phase space

Down-select from the previous study, CERN-ACC-2015-065

Down-select due to Boundary condition (not enough momentum aperture), and the scheme is applicable only for H and tt modes

Further investigation for the remaining schemes

Conventional scheme (1)

- Injection with orbit bump + septum
- Injection point
 - Light sources (Large aperture)
 - >30 σ \rightarrow 3~5 mm septum is fine
 - FCCee (Limited aperture)
 - Maximum ~10 σ
 - \rightarrow Impossible with 5 mm septum (next slide)
- Off-energy injection beam →Synchrotron phase space injection* with finite dispersion at septum

*P. Collier, Proc. of PAC 1995, p.551

Conventional scheme (2)

• On-energy, off-axis case

PAUL SCHERRER INSTITUT

- Separation required at septum= $5\sigma_s + S + 5\sigma_i$
 - σ_i optimum ~0.5 σ_s
 - Larger beta function preferred to reduce the septum thickness in terms of beam sigma
 - S = 5 mm, however, corresponds to ~4.4 σ_s even for 1 km beta function (ϵ = 1.3 nm)
 - Wire septum is essential to keep the injection point <10 σ
- Bump height required = $10\sigma_i + S + \alpha$
 - Additional bump height to keep septum away from the residual betatron oscillation

- 200 m long cells
- Beta at septum/kicker = 312 m
- Phase advance = 90 deg/cell
- With dispersion suppressor
- Bump kicker strength = 11+α µrad
 (0.2+α m, ~0.03 T @ 175 GeV)
- Wire septum essential

σ_s: Stored beam size
 σ_i: Injection beam size
 S: Septum thickness

Conventional scheme (3)

- Off-energy, on-axis case
 - Separation required at septum, $5\sigma_s + S + 5\sigma_i < Dx \delta_i$
 - Requirements for dispersion and energy offset (δ_i) are determined as well
 - σ_i optimum = σ_s (Very limited aperture for the off-energy beam)
 - $\sigma_{s/i}$ are increased due to the energy spread (0.19/0.14%) of the stored/injection beam
 - Bump height required = $10\sigma_i + S$

- 200 m long cells
- Beta at septum/kicker = 312 m
- Phase advance = 90 deg/cell
- Dispersion at septum = 0.8 m (Difficult to increase Dx...)
- Bump kicker strength = 44 μrad (0.8 m, ~0.03 T @ 175 GeV)
- δ_i =-2.46% to meet $5\sigma_s$ + S + $5\sigma_i$ < Dx δ_i with 5 mm septum
- δ_i =-1.86% to meet $5\sigma_s$ + S + $5\sigma_i$ < Dx δ_i with a wire septum (200 µm)
 - Wire septum essential

Multipole kicker injection (1)

- Injection with multipole kicker + septum *
- Injection point
 - Light sources (Large aperture)
 - $>30\sigma \rightarrow$ Marginal kick for the store beam
 - FCCee (Limited aperture)
 - Maximum ~10 σ \rightarrow Some impact on the stored beam
- Nonlinear kicker**
 - Pros: Approximately dipole kick for the injected beam → Marginal mismatch from kicker
 - Cons: ~1.5 times less peak field \rightarrow ~1.5 times more kick for the stored beam

• Off-energy injection beam \rightarrow On-axis injection with finite dispersion at kicker

- * H. Takaki et al.,
- PR ST-AB, 13, 020705 (2010)
- ** T. Atkinson et al., IPAC'11Figures from S. Leemann et al.,L. O. Dallin, PAC'03

PAUL SCHERRER INSTITUT

Multipole kicker injection (2)

- On-energy, off-axis case
 - Separation required at septum= $15\sigma_s + S + 5\sigma_i$
 - The stored beam particles at $5\sigma_s$ are significantly kicked for 10σ injection point
 - Therefore, $15\sigma_s$ is to accept as much particles as in the dynamic aperture
 - At the same time, the injection point is at $10\sigma_s$, and thus ~15 σ_s is required anyway to accept the residual betatron oscillation of the injection beam
 - σ_i optimum ~ 0.5 σ_s

- 150 m long cells
- Beta at septum/kicker = 385 m
- Phase advance = 30 deg/cell
- With dispersion suppressor
- Sext. kicker strength = 1.7 m⁻²
 (Nonlinear kicker: 2 m, 0.012 T peak)
- Emittance increase ~15%
 with 5 mm septum
- Emittance increase ~6%
 with a wire septum (200 μm)

Multipole kicker injection (3)

- Off-energy, on-axis case
 - Separation required at septum= $15\sigma_s + S + 5\sigma_i$
 - The stored beam particles at $5\sigma_s$ are significantly kicked
 - Therefore, $15\sigma_s$ is to accept as much particles as in the dynamic aperture
 - σ_i optimum $\sim \sigma_s$ (Very limited aperture for the off-energy beam)

- 150 m long cells
- Beta at septum/kicker = 277 m
- Phase advance = 45 deg/cell
- Dispersion at kicker = 0.6 m
- δ_i= +2%
- Sext. kicker strength = 0.88 m⁻²
 (Nonlinear kicker: 3 m, 0.012 T at peak)
- Emittance increase ~30%
 with 5mm septum
- Emittance increase ~20%
 with a wire septum (200 µm)

Wire septum (1)

- Thin septum available, e.g. SPS ZS septum*
 - 25 um wires
 - Field 100 kV/cm
 - 3 m * 5 units
 - Used for 450 GeV
 p-beam extraction

* Figures taken from B. Goddard and P Knaus, Proc. of EPAC 2000, p.2255

Wire septum (2)

- Specification for 175 GeV electron/positron beam
 - Amplification factor, $\sqrt{\beta_{WS}\beta_{thick_septum}}$ ~300
 - ~12 MV integrated voltage for ~20 mm separation
 - for example <40 kV/cm, 3 m unit
- Synchrotron radiation

PAUL SCHERRER INSTITUT

- 90 degree cells in conventional injection scheme avoids the SR from the store beam ☺
- SR mainly from the injection beam
- SR characteristics
 - (Conventional injection, off-energy)
 - Critical/Mean photon energy = 1.3/0.4 MeV
 - SR energy of ~2 mJ into WS gap per 1% top-up (~230 keV/particle)
- SPS/LEP experience*

Accelerator	Equipment	Beam mode	HV polarity	Field kV/cm	Spark rate h-1
SPS	ZS	none	negative	145	1
SPS	ZS	p, e+,e-	negative	100	10
LEP	ZX	none	positive	50	0.2
LEP	ZX	none	negative	50	0.4
LEP	ZX	e+,e-	positive	15	0.01
LEP	ZX	e+,e-	negative	15	4
LEP	ZL	none	bipolar	50	0.2
LEP	ZL	e+,e-	bipolar	30	0.0004
LEP	ZL	<u>e+,e-</u>	negative	30	4

Table 2: Spark rates for the HV equipment in the SPS and LEP accelerators for combinations of proton (p) and e+,e- beams, and applied HV polarity. Normal operating conditions are in bold.

← ZX and ZL are separators, where the stored beam is going through

It seems encouraging to employ WS for FCCee injection

* N. Garrel, B. Goddard, W. Kalbreier and R. Keizer, CERN SL/95-18 (BT)

Experience from PF-AR, KEK*

Figure 4: Turn-by-turn stored beam profiles in the kicker, PSM, and PQM injections measured by using a fast-gated camera.

*R. Takai et al., Proc. of DIPAC 2011, p.305

Open issues

- Beam-beam effects
 - Residual betatron/synchrotron oscillation of the injection beam is problematic though the injection beam charge is a few %?
 - Preferably off-energy (on-axis) injection?
 Higher inj. efficiency and less background at LEP.
 - A few % charge difference between e- and e+ colliding over one booster cycle. Acceptable?
 - Beam disturbance in Conventional injection needs to be evaluated.
 - How much emittance growth in Multipole kicker injection is acceptable?
- Filling scheme
 - Number of batches/bunches per booster cycle?
 - Timing: Ratio of Booster length to Collider length should be NB/NC with integer numbers?
 - Filling pattern feedback?

Summary

- Conventional scheme and Multipole injection are further investigated for the tt mode
 - Both schemes (and both on- and off-energy) may be feasible
 - Possible optics presented
 - Very thin septum (Wire septum)
 - Essential for the conventional scheme (on- and off-energy)
 - However, much relaxed specification w.r.t. SPS ZS septum
 - Preferable for Multipole injection scheme (on- and off-energy)
 - Injection is easier for the operation modes other than tt
- Detailed study of beam-beam effects is necessary to decide the suitable injection scheme

Summary table

	Conventional	Multipole kicker	
Residual oscillation	Betatron / Synchrotron	Betatron / Synchrotron	
(Injection beam)	(On energy / Off energy)	(On energy / Off energy)	
Disturbance			
(Stored beam)	Betatron oscillation (in practice)	Emittance growth (intrinsic)	
	E		
Wire septum	Essential	Mitigate emittance growth	
Kicker specification	Feasible	Feasible	
Separation,	~15σ		
stored beam to septum	(5 σ at the time of injection)	15σ	

Backup slides

Influence of multipole kicker

• Mismatch

PAUL SCHERRER INSTITUT

- Injection beam is not only kicked by the multipole kicker but also de/focused due to feeddown quad component
- Nonlinear kicker is essential for the lattice presented since the beam size becomes too big at the septum when normal sextupole kicker is employed
- Emittance growth
 - Since the injection point is rather close to the stored beam, the multipole kicker increases the stored beam emittance at the moment of top-up injection
 - Using a nonlinear kicker is assumed for the evaluation of the emittance growth, i.e. K2L is increased 1.5 times for the computation

Beta function with feed-down quad

Particle distribution with and without sextupole kick at septum (off-energy inj.)

The requirement is basically the same for on-energy injection

Swap-out injection*

- Bunch-by-bunch / The entire train at one time
- Septum + Short/Long-pulse dipole-kicker
 - On-axis injection
 - Pseudo-transparent to circulating bunches
 - Without injection chicane

* L. Emery and M. Borland, Proc. PAC 2003, pp.256-258 (2003)

Longitudinal injection* - principle

- Septum + Short-pulse dipole kicker
 - On-axis injection
 - Transparent to circulating bunches
 - Without injection chicane

Ζ

* M. Aiba et al., PRSTAB, 18, 020701 (2015)

Longitudinal injection for FCC

Longitudinal 1-D tracking with H mode parameters

- Longitudinal phase space may not be suitable (too large bucket height)
- Short pulse kicker may be too challenging...

Fast decaying tail (~1 ns for 400 MHz RF)

Repetition (Bunch spacing corresponds to 4 MHz)

Kickerless injection

- Dream injection!!
- Septum only (like in cyclotrons)
 - On-axis injection
 - Transparent to circulating bunches
 - Without injection chicane 4 -3 2 1 Longitudinal 1-D tracking (%) 0 -%) % with H-mode parameters -1 -2 2^{nd} turn (δ ~-3%) -3--4 Wire septum Injection point (δ =-4%) -5 0.95 0.90 1.00 0.75 0.80 0.85 1.05 Phase (π)

Not enough momentum aperture, and the scheme is applicable only for H and tt modes...