

SOTTO L'ALTO PATRONATO DEL PRESIDENTE DELLA REPUBBLICA UNDER THE HIGH PATRONAGE OF THE PRESIDENT OF THE ITALIAN REPUBLIC

FCC-ee injector complex including Booster Yannis Papaphilippou, CERN Thanks to: M.Aiba (PSI), Ö.Etisken (Ankara Un.), K.Oide (KEK), L.Rinolfi (ESI-JUAS), D.Shwartz (BINP), F.Zimmermann (CERN)

CERN

Outline

- FCC injector complex
- Injector parameters for past and future projects
- Tentative parameters for FCCee injector
- Design of Booster Ring
- Summary

FCCee injector complex (FG

- Injector complex is comprised by:
 - e+/e-LINAC (up to ~10GeV)
 - Pre-Booster Damping Ring PBDR (from ~10 to ~20GeV)
 - Booster ring (from ~20 to full FCCee energy)
 - Proposal for extra ring with wigglers for rapid radiative polarization (@~1-2 GeV)

Target injector parameters

Parameters (2016)	Z		WW	ZH	tt	LEP2
E [GeV]	45.6		80	120	175	104
I [mA]	1450		5260	780	81	1
No. bunches	30180	91500	5260	780	81	4
Bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
Lifetime [min]	94	185	90	67	57	434
Time between injections [sec]	114	224	109	81	69	263

- Short lifetimes from radiative Bhabha scattering and from BS, require continuous top-up injection.
- For defining injector cycle and flux, assumed 2% of current decay between top-ups
- The top energy FCC-ee defines the minimum time between injections/species (69 sec for this parameter set)
- Considering 50% duty factor (Interleaved e⁺/e⁻ injection), and minimum lifetime of ~10min, injections should be made every 12 sec at a rate of ~0.1Hz

Target injector parameters

Parameters (2016)	Z		WW	ZH	tt	LEP2
E [GeV]	45.6		80	120	175	104
I [mA]	1450		5260	780	81	1
No. bunches	30180	91500	5260	780	81	4
Bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
Lifetime [min]	94	185	90	67	57	434
Time between injections [sec]	114	224	109	81	69	263
Injected top-up bunch population [10 ¹¹]	604.2		63.2	12.5	2.8	0.34
Required particle flux for top-up [10 ¹¹ p/sec]	6.6	3.4	0.7	0.19	0.05	0.001
Required particle flux for full filling [10 ¹¹ p/sec]	31.3		3.3	0.7	0.1	0.02
Booster injector ramp rate [GeV/sec]	5	.2	12.2	20.4	31.6	

- For full collider filling, assumed **20 min** of filling time and **80** % transfer efficiency along the injector chain
- Main flux challenge of 3.1x10¹² p/sec coming from the full filling of the FCCee-Z
- Maximum ramp rate of $\sim 32 \text{ GeV/sec}$ (10 sec cyclewith linear ramp and short flat bottom and top of $\sim 100 \text{ms}$), lower then SPS ramp rate ($\sim 62 \text{ GeV/sec}$)

SuperKEKB injector

- Lifetime of 6 min necessitates topup
- Injector should serve 4 rings
- almost compatible with FCC-ee
- **Collaboration** with KEK colleagues essential

@J-ARC

CERN

K.Furukawa, FCCee week 2016

CLIC Main Beam Injector Complex (

• All linac's at 2 GHz, bunch spacing

Amorphous thickness e =10 mm

Positron flux for linear colliders

	SLC	CLIC (3 TeV)	CLIC	ILC (RDR)	FCChe	FCChe ERL
		(5 10)	(0.5 107)	(mbn)	(puised)	
Energy [GeV]	1.19	2.86	2.86	5	140	60
e ⁺ / bunch (at IP) [10 ⁹]	40	3.7	7.4	20	1.6	2
e ⁺ / bunch (aft. capture) [10 ⁹]	50	7	14	30	1.8	2.2
Bunches / macropulse	1	312	354	2625	100 000	NA
Rep. Rate (Hz)	120	50	50	5	10	CW
Bunches / s	120	15600	17700	13125	106	$20x10^{6}$
e ⁺ flux [10 ¹⁴ p/s]	0.06	1.1	2.5	3.9	18	440

- **SLS injector positron flux** flux already compatible with FCCee needs
- FCChe is orders of magnitude above FCCee requirements (challenging design)

L. Rinolfi

Possible FCC-ee injector scheme (FSC)

- LINACs and positron production following a **CLIC version** (or upgraded LIL/CTF3)
- 2 GHz, 50 Hz repetition rate, around $3.3 \times 10^9 \text{ p/b}$
 - Other LINAC frequency (e.g. 3 GHz) is envisaged (see presentation of S.Polozov and appendix)
- Trains from 80 to 6100 bunches (depending on the FCCee flavours) injected 5 times in SPS (a) 10GeV in required 400 MHz bunch structure and accelerated to 20 GeV
 - Need **new RF system** in the SPS (**400 MHz**) and required power (voltage)
- SPS duty factor of 0.5 or less leaving time for fixed target proton physics
- **5 cycles** (or less) of **1.2 s** in a supercycle of maximum **12 s** (1 cycle for the top)
- Injected into the booster ring on a flat bottom of 6 s (or less) to be accelerated in 3 s to required extraction energy of FCC-ee
- Interleaved injection of positrons and electrons
- Filling time for full filling **20 min** for **FCCee-Z** (less for other flavours)
- **Top-up compatible** with all **required lifetimes** (down to **14.4 s** for both species)
- Alternative scenario with new PBDR is been worked out (see presentation of Ö.Etisken)

FCC-ee injector parameters

Accelerator	FCC	Cee-Z	FCCee-W		FCCee-H		CCee-W FCCee-H FCC		Cee-tt
Energy [GeV]	4.	5.6		80	120		-	175	
Type of filling	Full	Top-up	Full	Top-up	Full	Top-up	Full	Top-up	
LINAC # bunches	1830	6100	1	315	780		80		
LINAC repetition rate [Hz]		-		50					
LINAC RF freq [MHz]				2000					
LINAC bunch population [10 ⁹]	1.65	0.06	1.50	0.30	1.54	0.40	1.62	0.87	
# of LINAC injections		-	_	5			-		
SPS/BR bunch spacing [MHz]				400					
SPS bunches/injection	366	1220	2	263	156			16	
SPS bunch population [10 ¹⁰]	0.83	0.03	0.75	0.15	0.77	0.20	0.81	0.44	
SPS duty factor	C).5	C).44	0.17		0.17		
SPS / BR # of bunches	1830/9150	6100/30500	1315	5/5260	780/780		80/80		
SPS / BR cycle time [s]	1.2	/ 12	1.2	/ 10.8	1.2 / 7.2		1.2	/ 7.2	
Number of BR cycles	50	9	10	1	13	1	27	1	
Transfer efficiency	0.8								
Total number of bunches	91	500	5260		780			80	
Filling time (both species) [sec]	1200	216	216	21.6	187.2	14.4	388.8	14.4	
Injected bunch population [10 ¹⁰]	3.3	0.07	6.0	0.12	8.0	0.16	17.4	0.35	

Booster design - Geometry

- (FCC)
- Booster vs collider: same circumference, same tunnel, same emittance
- Cloned version collider "inner" quarter-ring, except the IR.
- Two-fold & mirror-symmetry.

D.Shwartz

Booster design - Geometry

• Inner arc & bypass chosen to be compatible with FCC-hh

14/04/2016

Top Energy [GeV]	45.6	80	120	175	
Cycle time [s]	12				
Circumference [m]		999	918.2		
Bending radius [m]		116	553.8		
Injection energy [GeV]			20		
Dipole length		1	0.5		
Emittance @ injection [nm]		0.	024		
Emittance @ extraction [nm]	0.12	0.38	0.85	1.8	
Bending field @ injection [G]			57		
Bending field @ extraction [G]	129 229 343 50				
Energy Loss / turn @ injection [MeV]	1.21				
Energy Loss / turn @ extraction [MeV]	31.1 310 1572 7109				
Trans. Damping time @ injection [turns]	32974				
Trans. Damping time @ extraction [turns]	2895	516	153	50	
Average current [mA]	36.3	19.0	2.9	0.31	
Average power @ injection [kW]	44.1	23.1	3.5	0.4	
Average power @ extraction [MW]	1.19	5.9	4.5	2.2	
Average power over 1 cycle [kW]	96	544	630	306	
Power from dipoles @ extraction [W]	171	847	651	317	
Power density on bends @ extraction [W/m]	16	81	62	30	
Critical energy [MeV]	0.02	0.10	0.33	1.02	
Radiation angle [µrad]	11.2 6.4 4.3 2.9				

Low emittance (a) extraction obtained quite naturally due to the small bending angle

•

- Good for injection efficiency and top-up
 Ultra-low emittances (a) injection if keeping the same optics as for collider
 - Collective effect studies

Top Energy [GeV]	45.6	80	120	175	
Cycle time [s]	12				
Circumference [m]		999	918.2		
Bending radius [m]		116	553.8		
Injection energy [GeV]			20		
Dipole length		1	0.5		
Emittance @ injection [nm]		0.	024		
Emittance @ extraction [nm]	0.12	0.38	0.85	1.8	
Bending field @ injection [G]	57				
Bending field @ extraction [G]	129	229	343	509	
Energy Loss / turn @ injection [MeV]	1.21				
Energy Loss / turn @ extraction [MeV]	31.1 310 1572 7109				
Trans. Damping time @ injection [turns]	32974				
Trans. Damping time @ extraction [turns]	2895	516	153	50	
Average current [mA]	36.3	19.0	2.9	0.31	
Average power @ injection [kW]	44.1	23.1	3.5	0.4	
Average power @ extraction [MW]	1.19	5.9	4.5	2.2	
Average power over 1 cycle [kW]	96	544	630	306	
Power from dipoles @ extraction [W]	171	847	651	317	
Power density on bends @ extraction [W/m]	16	81	62	30	
Critical energy [MeV]	0.02	0.10	0.33	1.02	
Radiation angle [µrad]	11.2	6.4	4.3	2.9	

Energy loss/turn determined by energy and ring geometry

•

- Same as for collider at extraction (~1.2 MeV at injection)
- Bending field at injection of **57 Gauss**
 - Should remain low as energy loss/turn at flat top already high
 - Compensation of eddy currents, hysteresis
 effects and appropriate
 shielding from FCC-ee
 main magnets is
 needed

Top Energy [GeV]	45.6	80	120	175	
Cycle time [s]	12				
Circumference [m]		999	918.2		
Bending radius [m]		116	653.8		
Injection energy [GeV]			20		
Dipole length		1	0.5		
Emittance @ injection [nm]		0.	024		
Emittance @ extraction [nm]	0.12	0.38	0.85	1.8	
Bending field @ injection [G]			57		
Bending field @ extraction [G]	129 229 343			509	
Energy Loss / turn @ injection [MeV]	1.21				
Energy Loss / turn @ extraction [MeV]	31.1 310 1572 710				
Trans. Damping time @ injection [turns]		32	974		
Trans. Damping time @ extraction [turns]	2895	516	153	50	
Average current [mA]	36.3	19.0	2.9	0.31	
Average power @ injection [kW]	44.1	23.1	3.5	0.4	
Average power @ extraction [MW]	1.19	5.9	4.5	2.2	
Average power over 1 cycle [kW]	96	544	630	306	
Power from dipoles @ extraction [W]	171	847	651	317	
Power density on bends @ extraction [W/m]	16	81	62	30	
Critical energy [MeV]	0.02	0.10	0.33	1.02	
Radiation angle [µrad]	11.2	6.4	4.3	2.9	

 Average current considered for full filling, from a few to ~36 mA

• Average power at injection up to **44 kW**

- Up to ~**2.2 MW** at extraction
- Power density
 exceeds 1W/m in all
 extraction energies
 - Needs shielding

Top Energy [GeV]	45.6	80	120	175	
Cycle time [s]	12				
Circumference [m]		999	918.2		
Bending radius [m]		116	553.8		
Injection energy [GeV]			20		
Dipole length		1	0.5		
Emittance @ injection [nm]		0.	024		
Emittance @ extraction [nm]	0.12	0.38	0.85	1.8	
Bending field @ injection [G]	57				
Bending field @ extraction [G]	129 229 343 50				
Energy Loss / turn @ injection [MeV]	1.21				
Energy Loss / turn @ extraction [MeV]	31.1 310 1572 7109				
Trans. Damping time @ injection [turns]	32974				
Trans. Damping time @ extraction [turns]	2895	516	153	50	
Average current [mA]	36.3	19.0	2.9	0.31	
Average power @ injection [kW]	44.1	23.1	3.5	0.4	
Average power @ extraction [MW]	1.19	5.9	4.5	2.2	
Average power over 1 cycle [kW]	96	544	630	306	
Power from dipoles @ extraction [W]	171	847	651	317	
Power density on bends @ extraction [W/m]	16	81	62	30	
Critical energy [MeV]	0.02	0.10	0.33	1.02	
Radiation angle [µrad]	11.2	6.4	4.3	2.9	

Critical energies @ extraction as for the collider (up to **1.MeV** for highest energy) • Vertical radiation angle of a few **µrads** • Needs demanding shielding, absorption scheme and vacuum chamber design

Summary

- Plenty of work to be done
- LINAC design (see **S.Polozov** presentation)
- Positron production
- Booster design
 - Booster integration in the tunnel
 - 50 Gs dipoles practical possibility (cycling, shielding, stability, quality)
 - Polarization aspects & insertions
 - Linear optics (depending on energy?) and non-linear dynamics
 - IBS and collective effects
 - Injection to the collider (see M.Aiba presentation)

Thank you for your attention