







# FCC-ee injector complex including Booster

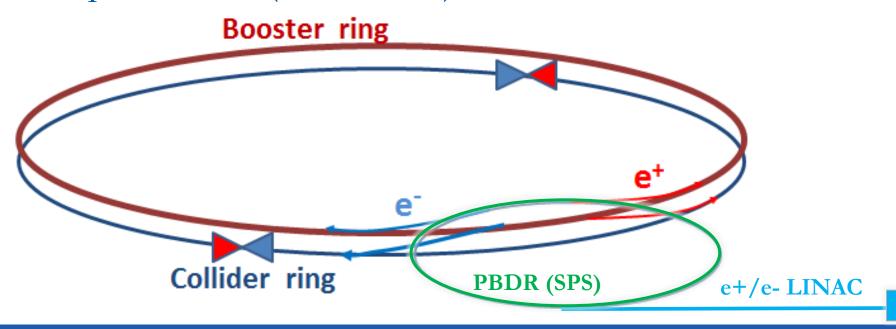
Yannis Papaphilippou, CERN Thanks to:

M.Aiba (PSI), Ö.Etisken (Ankara Un.), K.Oide (KEK), L.Rinolfi (ESI-JUAS), D.Shwartz (BINP), F.Zimmermann (CERN)



#### Outline




- FCC injector complex
- Injector parameters for past and future projects
- Tentative parameters for FCCee injector
- Design of Booster Ring
- Summary



### FCCee injector complex



- Injector complex is comprised by:
  - e+/e-LINAC (up to  $\sim 10GeV$ )
  - Pre-Booster Damping Ring PBDR (from ~10 to ~20GeV)
  - Booster ring (from ~20 to full FCCee energy)
  - Proposal for extra ring with wigglers for rapid radiative polarization ( $@ \sim 1-2 \text{ GeV}$ )





#### Target injector parameters



| Parameters (2016)                    | Z     |       | WW   | ZH  | tt  | LEP2 |
|--------------------------------------|-------|-------|------|-----|-----|------|
| E [GeV]                              | 45.6  |       | 80   | 120 | 175 | 104  |
| I [mA]                               | 1450  |       | 5260 | 780 | 81  | 1    |
| No. bunches                          | 30180 | 91500 | 5260 | 780 | 81  | 4    |
| Bunch population [10 <sup>11</sup> ] | 1.0   | 0.33  | 0.6  | 0.8 | 1.7 | 4.2  |
| Lifetime [min]                       | 94    | 185   | 90   | 67  | 57  | 434  |
| Time between injections [sec]        | 114   | 224   | 109  | 81  | 69  | 263  |

- Short lifetimes from radiative Bhabha scattering and from BS, require continuous top-up injection.
- For defining injector cycle and flux, assumed 2% of current decay between top-ups
- The top energy FCC-ee defines the minimum time between injections/species (69 sec for this parameter set)
- Considering 50% duty factor (Interleaved e<sup>+</sup>/e<sup>-</sup> injection), and minimum lifetime of ~10min, injections should be made every 12 sec at a rate of ~0.1Hz

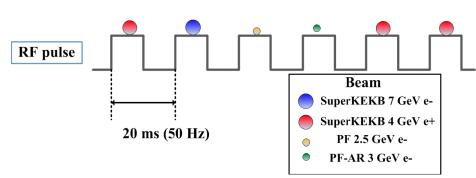


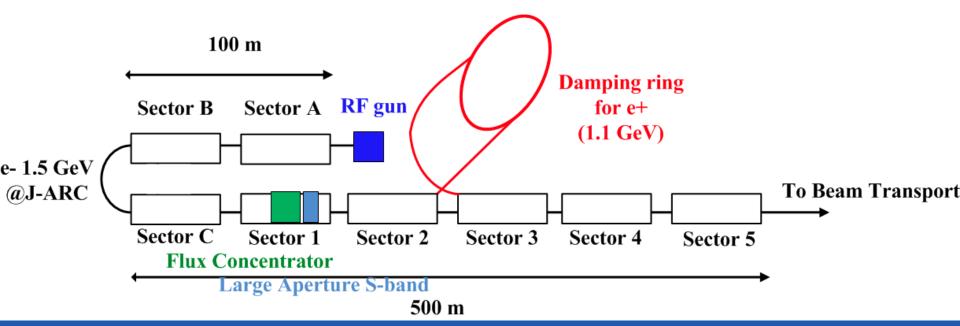
#### Target injector parameters



| Parameters (2016)                                                | Z     |       | WW   | ZH   | tt   | LEP2  |
|------------------------------------------------------------------|-------|-------|------|------|------|-------|
| E [GeV]                                                          | 45.6  |       | 80   | 120  | 175  | 104   |
| I [mA]                                                           | 1450  |       | 5260 | 780  | 81   | 1     |
| No. bunches                                                      | 30180 | 91500 | 5260 | 780  | 81   | 4     |
| Bunch population [10 <sup>11</sup> ]                             | 1.0   | 0.33  | 0.6  | 0.8  | 1.7  | 4.2   |
| Lifetime [min]                                                   | 94    | 185   | 90   | 67   | 57   | 434   |
| Time between injections [sec]                                    | 114   | 224   | 109  | 81   | 69   | 263   |
| Injected top-up bunch population [10 <sup>11</sup> ]             | 60    | 4.2   | 63.2 | 12.5 | 2.8  | 0.34  |
| Required particle flux for top-up [10 <sup>11</sup> p/sec]       | 6.6   | 3.4   | 0.7  | 0.19 | 0.05 | 0.001 |
| Required particle flux for full filling [10 <sup>11</sup> p/sec] | 31    | .3    | 3.3  | 0.7  | 0.1  | 0.02  |
| Booster injector ramp rate [GeV/sec]                             | 5     | .2    | 12.2 | 20.4 | 31.6 |       |

- For full collider filling, assumed **20 min** of filling time and **80** % transfer efficiency along the injector chain
- Main flux challenge of 3.1x10<sup>12</sup> p/sec coming from the full filling of the FCCee-Z
- Maximum ramp rate of  $\sim$ 32 GeV/sec (10 sec cyclewith linear ramp and short flat bottom and top of  $\sim$ 100ms), lower then SPS ramp rate ( $\sim$ 62 GeV/sec)

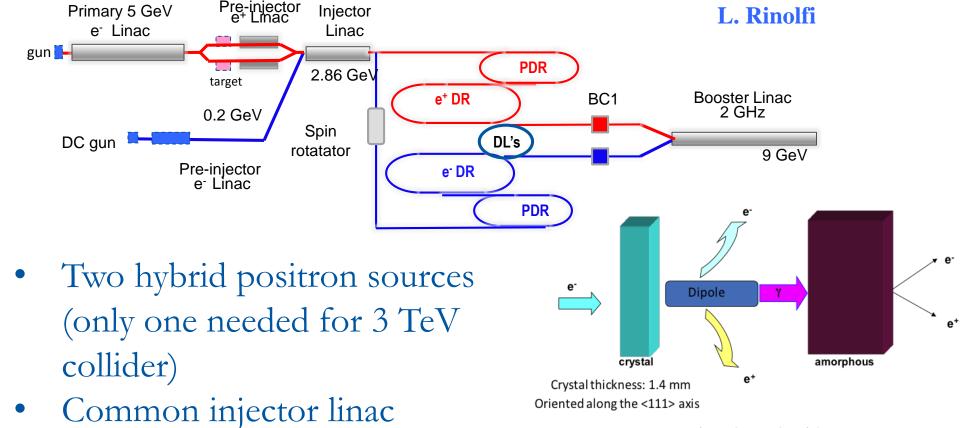




#### SuperKEKB injector



- Lifetime of 6 min necessitates topup
- Injector should serve 4 rings
  - Repetition rate 50Hz
- Positron flux rate at 2.5x10<sup>12</sup> p/s is almost compatible with FCC-ee
- Collaboration with KEK colleagues essential

#### K.Furukawa, FCCee week 2016








#### CLIC Main Beam Injector Complex





Distance (crystal-amorphous) d = 2 m

Amorphous thickness e =10 mm



spacing

All linac's at 2 GHz, bunch

#### Positron flux for linear colliders



|                                                          | SLC  | CLIC    | CLIC      | ILC   | FCChe    | FCChe              |
|----------------------------------------------------------|------|---------|-----------|-------|----------|--------------------|
|                                                          |      | (3 TeV) | (0.5 TeV) | (RDR) | (pulsed) | ERL                |
| Energy [GeV]                                             | 1.19 | 2.86    | 2.86      | 5     | 140      | 60                 |
| e <sup>+</sup> / bunch (at IP) [10 <sup>9</sup> ]        | 40   | 3.7     | 7.4       | 20    | 1.6      | 2                  |
| e <sup>+</sup> / bunch (aft. capture) [10 <sup>9</sup> ] | 50   | 7       | 14        | 30    | 1.8      | 2.2                |
| Bunches / macropulse                                     | 1    | 312     | 354       | 2625  | 100 000  | NA                 |
| Rep. Rate (Hz)                                           | 120  | 50      | 50        | 5     | 10       | CW                 |
| Bunches / s                                              | 120  | 15600   | 17700     | 13125 | 106      | 20x10 <sup>6</sup> |
| e <sup>+</sup> flux [10 <sup>14</sup> p/s]               | 0.06 | 1.1     | 2.5       | 3.9   | 18       | 440                |

- SLS injector positron flux flux already compatible with FCCee needs
- FCChe is orders of magnitude above FCCee requirements (challenging design)

L. Rinolfi



#### Possible FCC-ee injector scheme



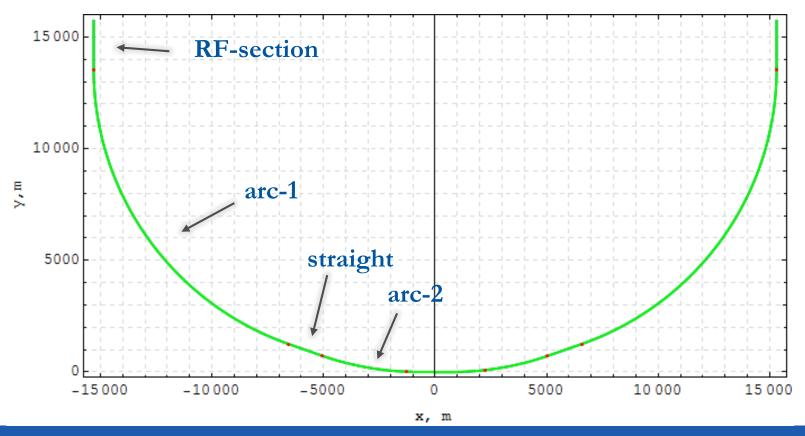
- LINACs and positron production following a **CLIC version** (or upgraded LIL/CTF3)
- 2 GHz, 50 Hz repetition rate, around 3.3 x 10<sup>9</sup> p/b
  - Other LINAC frequency (e.g. 3 GHz) is envisaged (see presentation of S.Polozov and appendix)
- Trains from 80 to 6100 bunches (depending on the FCCee flavours) injected 5 times in SPS @ 10GeV in required 400 MHz bunch structure and accelerated to 20 GeV
  - Need **new RF system** in the SPS (**400 MHz**) and required power (voltage)
- SPS duty factor of 0.5 or less leaving time for fixed target proton physics
- 5 cycles (or less) of 1.2 s in a supercycle of maximum 12 s (1 cycle for the top)
- Injected into the booster ring on a flat bottom of 6 s (or less) to be accelerated in 3
   s to required extraction energy of FCC-ee
- Interleaved injection of positrons and electrons
- Filling time for full filling 20 min for FCCee-Z (less for other flavours)
- Top-up compatible with all required lifetimes (down to 14.4 s for both species)
- Alternative scenario with new PBDR is been worked out (see presentation of Ö.Etisken)



#### FCC-ee injector parameters



| Accelerator                              | FCC       | Cee-Z      | FCCee-W  |            | FCCee-W |            | FCCee-H |            | W   FCCee-H   FC |       | FC  | Cee-tt |
|------------------------------------------|-----------|------------|----------|------------|---------|------------|---------|------------|------------------|-------|-----|--------|
| Energy [GeV]                             | 4.        | 5.6        |          | 80         | 120     |            | 1       | 75         |                  |       |     |        |
| Type of filling                          | Full      | Top-up     | Full     | Top-up     | Full    | Top-up     | Full    | Top-up     |                  |       |     |        |
| LINAC # bunches                          | 1830      | 6100       | 1315 780 |            |         |            | 80      |            |                  |       |     |        |
| LINAC repetition rate [Hz]               |           |            |          | 50         |         |            |         |            |                  |       |     |        |
| LINAC RF freq [MHz]                      |           |            |          | 2000       |         |            |         |            |                  |       |     |        |
| LINAC bunch population [109]             | 1.65      | 0.06       | 1.50     | 0.30       | 1.54    | 0.40       | 1.62    | 0.87       |                  |       |     |        |
| # of LINAC injections                    |           |            |          | 5          |         |            |         |            |                  |       |     |        |
| SPS/BR bunch spacing [MHz]               |           |            |          | 400        |         |            |         |            |                  |       |     |        |
| SPS bunches/injection                    | 366       | 1220       | 2        | 263        | 156     |            |         | 16         |                  |       |     |        |
| SPS bunch population [10 <sup>10</sup> ] | 0.83      | 0.03       | 0.75     | 0.15       | 0.77    | 0.20       | 0.81    | 0.44       |                  |       |     |        |
| SPS duty factor                          |           | ).5        | 0        | 0.44       | 0       | .17        | 0       | .17        |                  |       |     |        |
| SPS / BR # of bunches                    | 1830/9150 | 6100/30500 | 1315     | 5/5260     | 780/780 |            | 80/80   |            |                  |       |     |        |
| SPS / BR cycle time [s]                  | 1.2       | / 12       | 1.2      | 1.2 / 10.8 |         | 1.2 / 10.8 |         | 1.2 / 10.8 |                  | / 7.2 | 1.2 | / 7.2  |
| Number of BR cycles                      | 50        | 9          | 10       | 1          | 13      | 1          | 27      | 1          |                  |       |     |        |
| Transfer efficiency                      | 0.8       |            |          |            |         |            |         |            |                  |       |     |        |
| Total number of bunches                  | 91        | 500        | 5260     |            | 5260 7  |            | 780     |            |                  | 80    |     |        |
| Filling time (both species) [sec]        | 1200      | 216        | 216      | 21.6       | 187.2   | 14.4       | 388.8   | 14.4       |                  |       |     |        |
| Injected bunch population [1010]         | 3.3       | 0.07       | 6.0      | 0.12       | 8.0     | 0.16       | 17.4    | 0.35       |                  |       |     |        |

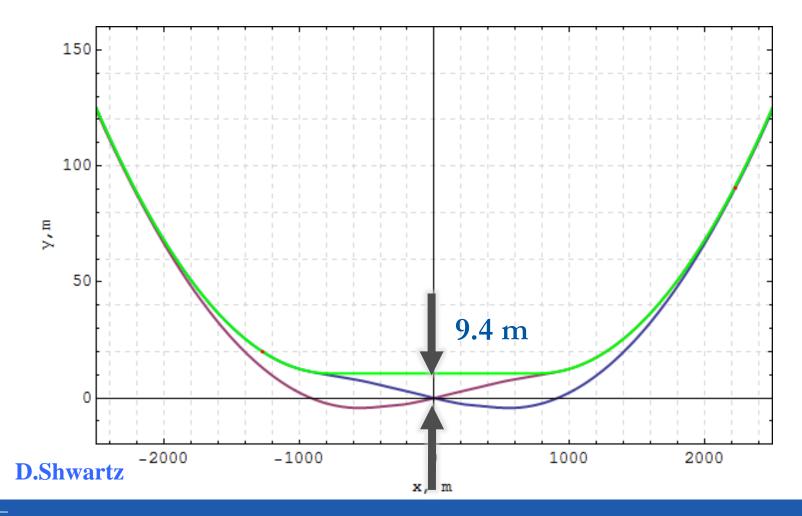



#### Booster design - Geometry



- Booster vs collider: same circumference, same tunnel, same emittance
- Cloned version collider "inner" quarter-ring, except the IR.
- Two-fold & mirror-symmetry.

**D.Shwartz** 

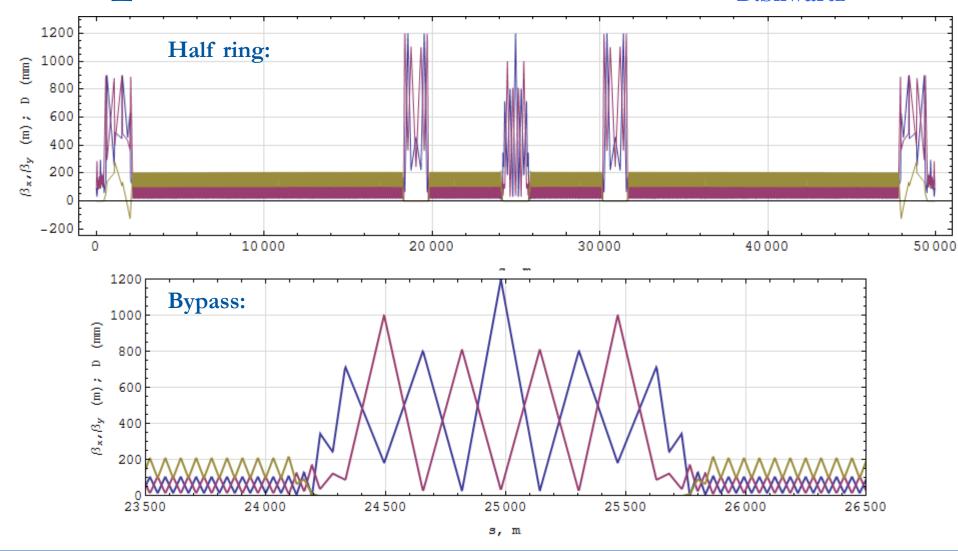





### Booster design - Geometry



Inner arc & bypass chosen to be compatible with FCC-hh






## Optics



**D.Shwartz** 







| Top Energy [GeV]                          | 45.6              | 80   | 120   | 175  |  |
|-------------------------------------------|-------------------|------|-------|------|--|
| Cycle time [s]                            | 12                |      |       |      |  |
| Circumference [m]                         |                   | 999  | 918.2 |      |  |
| Bending radius [m]                        |                   | 116  | 553.8 |      |  |
| Injection energy [GeV]                    |                   |      | 20    |      |  |
| Dipole length                             |                   | 1    | 0.5   |      |  |
| Emittance @ injection [nm]                |                   | 0.   | 024   |      |  |
| Emittance @ extraction [nm]               | 0.12              | 0.38 | 0.85  | 1.8  |  |
| Bending field @ injection [G]             | 57                |      |       |      |  |
| Bending field @ extraction [G]            | 129               | 229  | 343   | 509  |  |
| Energy Loss / turn @ injection [MeV]      | 1.21              |      |       |      |  |
| Energy Loss / turn @ extraction [MeV]     | 31.1 310 1572 710 |      |       |      |  |
| Trans. Damping time @ injection [turns]   | 32974             |      |       |      |  |
| Trans. Damping time @ extraction [turns]  | 2895              | 516  | 153   | 50   |  |
| Average current [mA]                      | 36.3              | 19.0 | 2.9   | 0.31 |  |
| Average power @ injection [kW]            | 44.1              | 23.1 | 3.5   | 0.4  |  |
| Average power @ extraction [MW]           | 1.19              | 5.9  | 4.5   | 2.2  |  |
| Average power over 1 cycle [kW]           | 96                | 544  | 630   | 306  |  |
| Power from dipoles @ extraction [W]       | 171               | 847  | 651   | 317  |  |
| Power density on bends @ extraction [W/m] | 16                | 81   | 62    | 30   |  |
| Critical energy [MeV]                     | 0.02              | 0.10 | 0.33  | 1.02 |  |
| Radiation angle [µrad]                    | 11.2              | 6.4  | 4.3   | 2.9  |  |

- extraction obtained quite naturally due to the small bending angle
  - Good for injection efficiency and top-up
- Ultra-low
  emittances a
  injection if
  keeping the same
  optics as for
  collider
  - Collective effect studies





| Top Energy [GeV]                          | 45.6               | 80   | 120   | 175  |
|-------------------------------------------|--------------------|------|-------|------|
| Cycle time [s]                            | 12                 |      |       |      |
| Circumference [m]                         |                    | 999  | 918.2 |      |
| Bending radius [m]                        |                    | 116  | 553.8 |      |
| Injection energy [GeV]                    |                    |      | 20    |      |
| Dipole length                             |                    | 1    | 0.5   |      |
| Emittance @ injection [nm]                |                    | 0.   | 024   |      |
| Emittance @ extraction [nm]               | 0.12               | 0.38 | 0.85  | 1.8  |
| Bending field @ injection [G]             | 57                 |      |       |      |
| Bending field @ extraction [G]            | 129                | 229  | 343   | 509  |
| Energy Loss / turn @ injection [MeV]      | 1.21               |      |       |      |
| Energy Loss / turn @ extraction [MeV]     | 31.1 310 1572 7109 |      |       |      |
| Trans. Damping time @ injection [turns]   | 32974              |      |       |      |
| Trans. Damping time @ extraction [turns]  | 2895               | 516  | 153   | 50   |
| Average current [mA]                      | 36.3               | 19.0 | 2.9   | 0.31 |
| Average power @ injection [kW]            | 44.1               | 23.1 | 3.5   | 0.4  |
| Average power @ extraction [MW]           | 1.19               | 5.9  | 4.5   | 2.2  |
| Average power over 1 cycle [kW]           | 96                 | 544  | 630   | 306  |
| Power from dipoles @ extraction [W]       | 171                | 847  | 651   | 317  |
| Power density on bends @ extraction [W/m] | 16                 | 81   | 62    | 30   |
| Critical energy [MeV]                     | 0.02               | 0.10 | 0.33  | 1.02 |
| Radiation angle [µrad]                    | 11.2               | 6.4  | 4.3   | 2.9  |

- Energy loss/turn determined by energy and ring geometry
  - Same as for collider at extraction (~1.2 MeV at injection)
- Bending field at injection of 57 Gauss
  - Should remain low as energy loss/turn at flat top already high
  - Compensation of eddy currents, hysteresis effects and appropriate shielding from FCC-ee main magnets is needed





| Top Energy [GeV]                          | 45.6               | 80   | 120   | 175  |  |
|-------------------------------------------|--------------------|------|-------|------|--|
| Cycle time [s]                            | 12                 |      |       |      |  |
| Circumference [m]                         |                    | 999  | 918.2 |      |  |
| Bending radius [m]                        |                    | 116  | 553.8 |      |  |
| Injection energy [GeV]                    |                    |      | 20    |      |  |
| Dipole length                             |                    | 1    | 0.5   |      |  |
| Emittance @ injection [nm]                |                    | 0.   | 024   |      |  |
| Emittance @ extraction [nm]               | 0.12               | 0.38 | 0.85  | 1.8  |  |
| Bending field @ injection [G]             | 57                 |      |       |      |  |
| Bending field @ extraction [G]            | 129                | 229  | 343   | 509  |  |
| Energy Loss / turn @ injection [MeV]      | 1.21               |      |       |      |  |
| Energy Loss / turn @ extraction [MeV]     | 31.1 310 1572 7109 |      |       |      |  |
| Trans. Damping time @ injection [turns]   | 32974              |      |       |      |  |
| Trans. Damping time @ extraction [turns]  | 2895               | 516  | 153   | 50   |  |
| Average current [mA]                      | 36.3               | 19.0 | 2.9   | 0.31 |  |
| Average power @ injection [kW]            | 44.1               | 23.1 | 3.5   | 0.4  |  |
| Average power @ extraction [MW]           | 1.19               | 5.9  | 4.5   | 2.2  |  |
| Average power over 1 cycle [kW]           | 96                 | 544  | 630   | 306  |  |
| Power from dipoles @ extraction [W]       | 171                | 847  | 651   | 317  |  |
| Power density on bends @ extraction [W/m] | 16                 | 81   | 62    | 30   |  |
| Critical energy [MeV]                     | 0.02               | 0.10 | 0.33  | 1.02 |  |
| Radiation angle [µrad]                    | 11.2               | 6.4  | 4.3   | 2.9  |  |

- Average current
   considered for full
   filling, from a few to
   ~36 mA
- Average power at injection up to 44 kW
- Up to ~2.2 MW at extraction
- Power density
   exceeds 1W/m in all
   extraction energies
  - Needs shielding





| Top Energy [GeV]                          | 45.6              | 80   | 120   | 175  |
|-------------------------------------------|-------------------|------|-------|------|
| Cycle time [s]                            | 12                |      |       |      |
| Circumference [m]                         |                   | 999  | 918.2 |      |
| Bending radius [m]                        |                   | 116  | 553.8 |      |
| Injection energy [GeV]                    |                   |      | 20    |      |
| Dipole length                             |                   | 1    | 0.5   |      |
| Emittance @ injection [nm]                |                   | 0.   | 024   |      |
| Emittance @ extraction [nm]               | 0.12              | 0.38 | 0.85  | 1.8  |
| Bending field @ injection [G]             | 57                |      |       |      |
| Bending field @ extraction [G]            | 129               | 229  | 343   | 509  |
| Energy Loss / turn @ injection [MeV]      | 1.21              |      |       |      |
| Energy Loss / turn @ extraction [MeV]     | 31.1 310 1572 710 |      |       |      |
| Trans. Damping time @ injection [turns]   | 32974             |      |       |      |
| Trans. Damping time @ extraction [turns]  | 2895              | 516  | 153   | 50   |
| Average current [mA]                      | 36.3              | 19.0 | 2.9   | 0.31 |
| Average power @ injection [kW]            | 44.1              | 23.1 | 3.5   | 0.4  |
| Average power @ extraction [MW]           | 1.19              | 5.9  | 4.5   | 2.2  |
| Average power over 1 cycle [kW]           | 96 544 630        |      | 306   |      |
| Power from dipoles @ extraction [W]       | 171               | 847  | 651   | 317  |
| Power density on bends @ extraction [W/m] | 16                | 81   | 62    | 30   |
| Critical energy [MeV]                     | 0.02              | 0.10 | 0.33  | 1.02 |
| Radiation angle [µrad]                    | 11.2              | 6.4  | 4.3   | 2.9  |

- Critical energies @ extraction as for the collider (up to 1.MeV for highest energy)
- Vertical radiation angle of a few µrads
- Needs demanding shielding, absorption scheme and vacuum chamber design



### Summary



- Plenty of work to be done
- LINAC design (see **S.Polozov** presentation)
- Positron production
- Booster design
  - Booster integration in the tunnel
  - 50 Gs dipoles practical possibility (cycling, shielding, stability, quality)
  - Polarization aspects & insertions
  - Linear optics (depending on energy?) and non-linear dynamics
  - IBS and collective effects
  - Injection to the collider (see **M.Aiba** presentation)



