

Beam-beam Effects and Compensation Techniques

<u>Javier Barranco</u> (EPFL), Tatiana Pieloni, Xavier Buffat, Claudia Tambasco (CERN), Matthew Crouch (Manchester U.)

Acknowledgements: Roman Martin, Andy Langner, Rogelio Tomas, Daniel Schulte, Emilia Cruz.

Collisions @ FCC-hh

- FCC-hh will collide in two high-luminosity experiments (A and G regions).
- Two other experiments (**F** and **H**) **not** considered in this study.
- Relevant FCC-hh beam-beam related parameters in the ultimate scenario.

Parameter	Value
CMS energy [TeV]	100
Bunch distance [ns]	25
Bunch charge [10 ¹¹ ppb]	1.0
Norm. emittance [µm]	2.2
RMS bunch length [cm]	8
IP β-function [m]	0.3
IP beam size [µm]	3.5
ξ _{bb} (2 IPs)	0.011
IR L* [m]	45

• The ultimate scenario relies on the use of **crab cavities** ensure full HO collisions.

Beam-beam interactions

- The two counter rotating beams will cross each other at the interaction regions (IRs). Two types of interaction:
 - *Head-on (HO)*: Two bunches colliding at the IP with **zero** or small separation.
 - Long range (LRs): Bunches in the common beam pipe region will be affected by the opposite beam at a separation. These interactions are characterized by the separation of the first encounter (d_{sep}).

Simulations

- In order to validate the different scenarios from BB point of view we will use the **dynamic aperture** as figure of merit as done for the LHC design.
- The dynamic aperture refers to the **boundary for chaotic motion** in circular machines. This limit should be large enough to not interfere with aperture limitations (collimation system) and ensure adequate beam life time.
- DA criteria adopted: all particles stable up to initial 6σ .
- The simulations are done with the SixTrack code using the SixDesk environment.
- Parameters:
 - Tracking turns: 10⁶
 - Phase space angles XY: 5 (to be increased in the future to improve resolution)
 - Normalized emittance: 2.2 µm (constant)
 - No magnets errors included (now ready to be included as next step)
 - 4D beam-beam head on interactions (crab crossing as 1 HO 4D)
 - Maximum number of BB encounters
- The results presented were obtained lxplus clusters at CERN, but possibility of using the BOINC platform if workload increases significantly.

Results. Baseline L^{*}=45 m

- For the baseline parameters (I=10¹¹ ppb, see table before) a 6 σ DA is ensured with a $\theta/2\sim76\mu$ rad, i.e. d_{sep} = 12.95 σ .
- Large parameter space for more challenging scenarios.
- This is consistent with previous studies done with a FCC toy lattice (Xavier's presentation in Washington 2015) taking into account the differences in the IR region design.

Results. Baseline L^{*}=45 m

- For the baseline parameters (I=10¹¹ ppb, see table before) a 6 σ DA is ensured with a $\theta/2\sim76\mu$ rad, i.e. d_{sep} = 12.95 σ .
- Large parameter space for more challenging scenarios.
- This is consistent with previous studies done with a FCC toy lattice (Xavier's presentation in Washington 2015) taking into account the differences in the IR region design.

Results. Baseline L^{*}=45 m

- For the baseline parameters (I=10¹¹ ppb, see table before) a 6 σ DA is ensured with a $\theta/2\sim76\mu$ rad, i.e. $d_{sep}=$ 12.95 σ .
- This is consistent with previous studies done with a FCC toy lattice (presented in Washington 2015) considering the differences in the IR region design.
- Scaling from the LHC case using laws in 1,

$$\frac{I_b n_{LR}}{d_{sep}^2} \propto \Delta Q_{LR} \implies \mathsf{d}_{sep} \approx 14 \sigma$$

$$\frac{I_b n_{LR}}{d_{sep}^4} \propto \text{Tune Spread} \implies \mathsf{d}_{sep} \approx 12 \sigma$$

Good agreement between 'detailed' simulations and coarse estimations.

¹S. Peggs and B. Neuffer, "Beam-beam tuneshifts and spread in the SSC – Head on, long range and PACMAN conditions", April 1986, SSC-63, Dallas, USA.

Why a 6σ DA criteria?

- Extensive experimental studies since 2010 to validate the LHC DA scaling laws vs BB parameters (crossing angle, β^* , intensities) to identify the minimum BB separation (BB pattern in the losses).
- 2015 DA vs beam and luminosity lifetime as a function on the crossing angle (quantitative estimates). 3σ

 6σ criteria is robust as it gives 2σ margin from observables BB LR effects on beam and luminosity lifetime.

Spectrometer Magnet in the IRs

- Requested by the experiments. Dipole inside the experiment to bend particles trajectories.
- Two angles now: effective (luminosity) and external (aperture) crossing angle.
- Negative polarity pushes away the long ranges interactions while positive brings them closer to the
 opposite beam.

Spectrometer Polarity

- Requested by the experiments. Dipole inside the experiment to bend particles trajectories.
- Introduces a new concept: effective (luminosity) and external (aperture) crossing angle.
- Negative polarity pushes away the long ranges interactions while positive brings them closer to the opposite beam.

DA vs spectrometer polarity

As expected negative polarities provides better DA for a given internal crossing angle.

The 6σ limit gives the following **effective** angles:

- Neg. polarity $\rightarrow \theta/2 \sim 71 \mu rad$
- No spectr. $\rightarrow \theta/2 \sim 76 \mu rad$
- Pos. polarity $\rightarrow \theta/2 \sim 87 \mu rad$

LR compensation: Wires,e-lens

 It is possible to compensate locally the kick by the long range interactions using an electrostatic wire¹.

- These devices has been tested in several beam experiments. However its location, current settings, distance to the circulating where always an iterative
- In ² a new semi analytic approach was developed showing that the compensation is maximized for a given ratio between β at the location of the wire.

$$r_w \equiv \frac{\beta_x^{w.R}}{\beta_y^{w.R}} = \frac{\beta_y^{w.L}}{\beta_x^{w.L}} = 2$$

• Test of wires in the LHC in near future. Lots of feedback and experience expected (H. Smickler and Y. Papaphilippou)

¹J. P. Koutchouk, "Principle of a Correction of the Long-Range Beam-Beam Effect in LHC using Electromagnetic Lenses", LHC Project Note 223, April 2000.

²S. Fartoukh et al., "Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC", PRSTAB 18, 121001 (2015).

LR compensation: Octupoles

- Past studies show that it is possible to recuperate significant DA levels in the HL-LHC by **powering octupoles at collision** (T. Pieloni and D. Banfi WP2 HLLHC January 2015)
- Resume the studies recently.
- However it has to be fully understood since the results cannot be reproduced in the LHC case so far. **Design differences** between the two cases could explain it.
- FCC we should explore this type of compensation.

HO compensation: e-lens

- Electron lenses can be considered as "electron cloud" that can be fully controlled (charge density, diameter, length...).
- Recent studies and development at RHIC show the feasibility of compensating HO BB effects with elens¹.
- E-lens operational used at RHIC for compensating half HO spread.

W. Fischer, "RHIC electron lenses upgrades", IPAC15.

If HO is a limit then,

Need of explore e-lens compensation

Upgrade of our tools/model to allow this studies and,

collaborations with RHIC team would be essentail.

Conclusions & Outlook

- Models and simulations were successfully set up for the FCC ultimate.
- The dynamic apertures is used as figure of merit to **characterize and validate** the different scenarios.
 - Intensity and crossing angles to determine limits.
 - Preliminary results shows 12.9 σ for the ultimate scenario (consistent with previous FCC studies as well with scaling laws from the LHC)
 - Studies with spectrometer show need of 10% increase of effective needed. Negative decreases 5% the angle.
- Different compensation techniques initial locations and values have to be set up. Proper simulations with updated codes will be needed.
- Next simulations steps
 - Include magnets errors and corrections.
 - 6D head on interactions with crab cavities.
 - Evaluate flat beams, flat optics.
 - Alternate crossing schemes HH, intermediate angles (?).
 - Parameters evolution during the fill (snapshots)