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= Target performance :

Baseline : 2 fb*/day
Ultimate : 8 fb™*/day

0 12 14

= 2 High luminosity experiments are considered -
Keep a margin for 2 lower luminosity experiments
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Parameter

Energy [TeV]

Length [km]

Bunch intensity [p]
Normalised emittance [um]
Nb. bunches

Bunch length [cm]

Momentum spread
Maximum &
tot

Turn around [h]

Number of IPs

p* [m]

Long-range beam-beam
separation [O]

Baseline

50

100
1011
2.2
10'600
8

1.1 10*
0.01

5
2 (4)

1.1 (0.3)*
12

= *We consider the current
optics design with B* = 0.3 m

(See R. Martin)



Synchrotron radiation

Energy loss
Energy loss per turn :
Transverse radiation damping rate : AE
PINg Trad = —— ~ 1.1-107 [turn] ~ 1 [h]
Twice faster in the longitudinal plane L
~ 109 ~ ~ 5 ~

T..=10° [turn] = 26 [h] T o pone wowisgen = 9-0 107 [turn]= 0.1 [s]
Natural lattice emittance : €2 o = 20/3—22N 203 1 .04 [um)
(FODO cell with 90° phase advance and 32v/3myc

0=360/45° bending angle per cell)

= Vertical and longitudinal emittances are —¢ [B55
limited by other effects (see later) X,0



@ Intrabeam scattering

= |IBS growth rates are a complex T . =361[h]
function of the lattice parameters -

=0 [h]
IBS,y,0
= Bjorken-Mtingwa algorithm (MAD- T e 1504 [h]
X) with Lattice V5 and baseline BSL0
beam parameters :
- Scale with initial parameters : %€z, _ 1 () €r06y06s0

Ot  1Bs I €x(t)ey(t)es(t)



Luminosity

E t — nbfre'uN(t) Sl cos((;b(t))z
IP( ) 4 B* (t)\/em(t)ey(t) \/1—|— tan(‘bgﬁ))g

Ut()

- Hour glass is neglected since *>>0_

- Luminosity burn off: %1 (t)= — Zﬁfp( ) =T tot



Luminosity

EIP(t) — nbfrevN(t)2'}’7‘ COS(¢(t))2

£ (o 2
4mB*(t) \/"::c (t)ey(t) \/1 Ti)gta,n( % = 0 with crab cavities

- Hour glass is neglected since *>>0_

- Luminosity burn off: %1 (t)= — Zﬁfp( ) =T tot



Luminosity

EIP(t) — nbfrevN(t)2'}’7‘ COS(¢(t))2

£ (o 2
4mB*(t) \/"::c (t)ey(t) \/1 Ti)gta,n( % = 0 with crab cavities

- Hour glass is neglected since *>>0_

= Luminosity burn off : g (t)= — Zﬁfp( )_Utot
=16yprad o =117 prad
c 1: X, m X,Inl
% 107
- -
E
S 107z
103_
1040 T 5 | 10 T 15 . 20 . 25

Scattering angle (u rad)
J. Molson, Proton scattering and collimation

for the LHC and LHC luminosity upgrade,
PhD Thesis, University of Manchester



Luminosity

EIP(t) _ nbfrevN(t)z'}’r COS(¢(t))2

2
4m 5 (t) \/G‘B (t)ey (t) \/ t( )2 tan( <i>(2 = 0 with crab cavities

- Hour glass is neglected since *>>0_

- Luminosity burn off: %1 (t)= — Zﬁfp( ) =T tot
=1.6 yrad O™ 11.7 prad

1 x',min

n GeI: 45 mb

107

= The scattering angles are smaller than the
Initial beam divergence at the interaction
point

107

1 - Cumulative scattering fraction

— No losses and negligible emittance growth

o€ 1 LOel 10°
OE_N —_dg '~
ot ZIP 2 N,n, ”"SB

- For smaller transverse emittances (endofthe . | . . ... 0
fill), only a fraction of the beam is lost ’ ° e 15 20 25

Scattering angle (u rad)

_ J. Molson, Proton scattering and collimation
= Conservatively assume 0 =0 %0, =153 mb for the LHC and LHC luminosity upgrade,

PhD Thesis, University of Manchester




@ Bunch length

= The longitudinal emittance damping time due to synchrotron
radiation is much faster (0.5 h) than the growth mechanisms
(Quantum excitation, IBS, RF noise)

- Longitudinal stability — € - (bunch intensity)**

= Other stabilizing mechanisms in the longitudinal plane,
e.g. Landau cavities?

- Bunch length would be limited by

= Intrabeam scattering
= Beam induced heating (o ocbunch intensity)

= Transverse Stability (stabilised by head-on beam-beam tune spread ?)
= Luminous region width Us

e \/2 (1+¢f,)




= Beam-beam limitations are a complex function of
the beam parameters and interaction region design

— Two simplified design constrains
N 1
= & < 0.01 iimate : €, <0.03) ot = Y

4e 5 s 2
_ _ 1P 1+ Zstan (5)
Assume alternating crossing angle / round beams 7t

s S =12
drift €
See J. Barranco, T. Pieloni gb(t) \/,8*(




Ee(t) =
1 I(t) €xr,0€y,0€s5,0
, + rins To eft()t)ey(t)es(t)
) = -
es(t) — (%) 5 €s,0
2

ﬁIP(t) _ nifreUN(t) Yr cos(p(t)) 2

AmB* (t) 1/ €x (t) ey (t) \/Hat() tan (242)
¢(t) — \/Bi?g’)}/ Sdmft

- &€ <0.01

_4(T) 1

b
ex(t)  ex(t) + g
Ter Trad Trad




@ Performance

25 ns

The optimal time In ol
luminosity production is 00
comparable to the turn E 02|
around time con
=2.0
= Baseline performance : glop
-1 '
2.3 fb~/day ggé
= With *=0.3 [m]: 5.1 fo™/day 20
. - 510
- With & <0.03:7.2 fb"/day 518% .
= The bunch length varies from 1;
8105 cm %ﬁé B
= The crossing angle is éo I e

adjusted from 140 to 30 prad Time [h]



= We assume that the beams

. . ]--2 f f : : : :
from the injectors are round — 8BS — sum
(E =€) E.l.O- ------- — Quantum ex. --- -Synch. damping |
X y “‘1: 7777777 mmmm— - e e — = 7777777 7777777 e o T
. 2 0.8
= First, we assume that the beams are ©

kept round during luminosity

production (Coupling, controlled
noise,... )

= The effect of IBS and
guantum excitation are

negligible with initial beam Time [h]
parameters

— They become comparable to the synchrotron damping rate
only after few hours

— Difficult to design an optics that is optimal for both round and
flat beams



I@v Intrinsic sources of noise
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.| — Horizontal |............ > = ]

= Letting the vertical emittance
shrink leads to unequal
beams after few hours

= The shrinkage of the vertical
leads to a blow-up of the
horizontal emittance (IBS)
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I@v Intrinsic sources of noise

.| — Horizontal |............ > = ]

= Letting the vertical emittance
shrink leads to unequal
beams after few hours

= The shrinkage of the vertical
leads to a blow-up of the
horizontal emittance (IBS)

Lumi [em~—2s~!]Norm. emit [p:m]
O o T N N e
O Ul O OO Ut O NDWH=UTSY
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= Similarly, letting the longitudinal gl
emittance shrink leads to a blow- 5%
up of the horizontal emittance =55
(IBS) =1
S10|
= The performance is reduced  E0o ,
by 10% %2.5 I
3 2.0t
- Control of the longitudinal and  £1/ ~
vertical emittances is required %8;80‘ A — 4 —




Lifetime due to other loss 2
mechanisms (Rest gas scattering, g

Touschek, non-linear diffusion, ...) £
should be kept above ~20-30 2
hours

09/ — Ga<003] __—"
— gtot<0-01

Ut 10! 107
Intensity lifetime [h]

10°



Lifetimes

Lifetime due to other loss
mechanisms (Rest gas scattering,
Touschek, non-linear diffusion, ...)
should be kept above ~20-30
hours

Emittance growth due to other
mechanisms (Field ripple,
ground motion, non-linear
diffusion,...) should be kept
above ~3-4 hours
— Tight constraints on
external noise sources
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s07. S0
%0.6
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Performance

Ultimate 25 ns

Configuration Performance
[fb™/day]

Baseline 2.3

+ 3*=0.3 m 5.2

+ xi < 0.03 7.2

+ Crab cavity 7.9

- 1h turn around time 8.9
(- Ultimate)

<105

= Achieving large
beam-beam
parameter and fast
turn around are a —————
scenario

OO OOFFNN OO

Lumi [cm~2s~!Norm. emit [um] Intensity

SOUTOUT OO UTO T ORI O o0 O

¢/IP
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Performance
@]

» Small p* are profitable in - Approximated estimation
configurations limited by the  of the hourglass effect :
beam-beam parameters = IR

0 HG

* Assuming large beam-beam Rua(t) = ﬁm; '(1 -
parameters, the scenario w/o *
crab cavities is already r=o®
saturated due to the
geometric loss factor

5o
O~
)

:
QL
=
S

—_
-

= Configurations with B*X¢[3*y
should be considered
= The [3* could be adapted
during the fill profiting from the

larger aperture (smaller
transverse emittance)

[— ¢<001]
o £<002]
| — £<0.03|

00 0.05 0.10 0.15 020 025 0.30
5* [m]

Avg lumi. production rate [fb~!/day]

9
8
7
Ol
5
!




Performance
@]

Short bunches

F10—— f f
e / | —  £<0.01
.'.-g 9
= Assuming that the bunch length ¢
can shrink downto1cm,the s, e
configurations w/o crab cavites 8,
are no longer limited by the £ 5
geometl‘IC faC’[OI‘ 50400 005 0.10 015 0.?0 0.?5 0.30

A [m]



Performance
@]

Short bunches

10— f f
L | — £<0.01
. lg 9/\5 : | ¢<002]|
= Assuming that the bunch length ¢ s = |
can shrink downto 1 cm, the 5,
configurations w/o crab cavities g
are no longer limited by the £ 5
geometrlc faC’[OI‘ 50400 05 0.10 015 0.?0 0.25 0.30

+ A [m]

= Aconfiguration with * = =2 S| Duneh ength e
5 cm and 0 >1cm can £ 05l _ emitance P2
52.0 : : ‘ i ' é
performance without crab ~ 5:}.
33 3 1 5 6 7 3

cavity and large beam-
beam parameter Time [h]




Parameter

Energy [TeV]

Length [km]

Bunch intensity [p]
Normalised emittance [um]
Nb. bunches

Bunch length [cm]

Momentum spread

E"[Ot

Turn around [h]

Number of IPs

p* [m]

Long-range beam-beam
separation [O]

Baseline
5ns

50

100
10*/5
2.2/5
10'600*5
8

10

0.01

5
2

1.1 (0.3)
12

Lumi [em~—2s~1] Norm. emit [zm]
SO TP NoOoocOoOoo
O O © U OO DI Ot

¢/IP

% 1010 !

107

= Similar performance (5.1 fb*/day) can be
achieved with the nominal 5 ns configuration



Short bunch spacing

Ultimate 5 ns

Configuration Performance 3‘15 _ : __________ Etot <0.02
[fb*/day] e (L
25ns 5ns

Baseline 2.3 2.3 :

+B*=0.3 52 5.1 A

+xi < 0.03 7.2 6.0 ol

+ Crab cavity 7.9 7.1 £0.1r

. 2 0.0
- 1h turn around time 8.9 8.0 —957
(- Ultimate) v o
= 1.5]
. =100
= Similar performance as € 051
— U.
for the 25 ns 1
configurations 0.
2 0.
- Ultimate configurations 0
seems at the edge of the 0.

required performance



Conclusion

The target performance is comfortably achieved within the baseline scenarios
(5 and 25 ns)

= [*=0.3 [m] seems reasonable and offers a factor ~2 margin

= Lower B* may increase further the performance when coupled with mitigations of
the geometric reduction factor (crab cavities or short bunches)

- Input from the experiments is critical (e.g luminous region length)
= Detailed studies of the beam-beam effects are required to define an optimal IR
design (B*X:tB*y, crossing scheme,...)

Intrabeam scattering can lead to a strong blowup of the horizontal emittance
because of the shrinkage of the vertical (or longitudinal) emittance

— Dedicated control mechanisms are required

In all scenarios, the performance could be jeopardized by an external source
of emittance growth — Need to evaluate constraints on the noise sources

The maximum performance saturates at around 10 fb™*/day as the time spent
colliding is smaller that the turn around time



@ Performance

Bunch intensity/Turn around

: : S — ¢c00t] 0
» The luminosity ap| — 0w
performance is close to &0 =
linear with the bunch g,
intensity & 4
2
= The turn around time is 3 N R

a critical parameter, itensiy 0
especially for high —
luminosity options

—_
-

£ <0.01
1 — £<0.02 |

Avg lumi. production rate [fo~'/day]

LT B-CH

i 5 3 4 5 6 7 8
Turn around time [h]
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