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Introduction

Turn around
(See. R. Alemany)

Initial (design) beam and 
machine parameters

Parameter Baseline

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011

Normalised emittance [μm] 2.2 

Nb. bunches 10'600

Bunch length [cm] 8

Momentum spread 1.1 10-4

Maximum ξ
tot

0.01

Turn around [h] 5 

Number of IPs 2 (4)

β* [m] 1.1 (0.3)*

Long-range beam-beam 
separation [σ]

12 

Luminosity
production

 Target performance :

  Baseline : 2 fb-1/day

  Ultimate : 8 fb-1/day
 2 High luminosity experiments are considered → 

Keep a margin for 2 lower luminosity experiments

 *We consider the current 
optics design with β* = 0.3 m 
(See R. Martin)



  

Synchrotron radiation

 Energy loss per turn :

 Transverse radiation damping rate :

Twice faster in the longitudinal plane

 Natural lattice emittance :          
(FODO cell with 90º phase advance and 
θ=360/45º bending angle per cell)

 Vertical and longitudinal emittances are 
limited by other effects (see later)

= ε
x,0

 / 55 

T
LHC 

≈ 109 [turn] ≈ 26 [h] T
DAΦNE (w/o wiggler) 

≈ 3.6 105 [turn]≈ 0.1 [s]



  

Intrabeam scattering

 IBS growth rates are a complex 
function of the lattice parameters

 Bjorken-Mtingwa algorithm (MAD-
X) with Lattice V5 and baseline 
beam parameters :

 Scale with initial parameters :

Τ
IBS,x,0

 = 361 [h]

Τ
IBS,y,0

 ≈ 0 [h]

Τ
IBS,l,0

 = 1504 [h]



  

Luminosity

 Hour glass is neglected since β*>>σ
s

 Luminosity burn off :



  

Luminosity

 Hour glass is neglected since β*>>σ
s

 Luminosity burn off :

= 0 with crab cavities 



  

Luminosity

 Hour glass is neglected since β*>>σ
s

 Luminosity burn off :

= 0 with crab cavities 

J. Molson, Proton scattering and collimation 
for the LHC and LHC luminosity upgrade, 
PhD Thesis, University of Manchester

σ
x',init

= 11.7 μradσ
x',min

= 1.6 μrad



  

Luminosity

 Hour glass is neglected since β*>>σ
s

 Luminosity burn off :

= 0 with crab cavities 

 σ
el 

= 45 mb

 The scattering angles are smaller than the 
initial beam divergence at the interaction 
point

→ No losses and negligible emittance growth

 For smaller transverse emittances (end of the 
fill), only a fraction of the beam is lost

 Conservatively assume σ
tot

= σ
in
+σ

el
 =153 mb

∂ϵ
∂ t

=∑IP

1
2

Lσel

N bnb

θrms
2 β*≈0

J. Molson, Proton scattering and collimation 
for the LHC and LHC luminosity upgrade, 
PhD Thesis, University of Manchester

σ
x',init

= 11.7 μradσ
x',min

= 1.6 μrad



  

Bunch length

 The longitudinal emittance damping time due to synchrotron 
radiation is much faster (0.5 h) than the growth mechanisms 
(Quantum excitation, IBS, RF noise)

 Longitudinal stability → ε
s
   (bunch intensity)2/5

 Other stabilizing mechanisms in the longitudinal plane, 
e.g. Landau cavities?

→ Bunch length would be limited by
 Intrabeam scattering
 Beam induced heating (σ

s
   bunch intensity)

 Transverse stability (stabilised by head-on beam-beam tune spread ?)

 Luminous region width

∝

∝



  

Beam-beam

 Beam-beam limitations are a complex function of 
the beam parameters and interaction region design 
→ Two simplified design constrains

 ξ
tot

 < 0.01 (ultimate : ξ
tot

 < 0.03)

Assume alternating crossing angle / round beams

 S
drift

 = 12

See J. Barranco, T. Pieloni

S
drift

σ



  

Model

 ξ
tot

 < 0.01



  

Performance
25 ns

 The optimal time in 
luminosity production is 
comparable to the turn 
around time

 Baseline performance :       
2.3 fb-1/day

 With β* =0.3 [m]: 5.1 fb-1/day

 With ξ
tot

 < 0.03 : 7.2 fb-1/day

 The bunch length varies from 
8 to 5 cm

 The crossing angle is 
adjusted from 140 to 30 μrad

ξ
tot

 < 0.01

ξ
tot

 < 0.02

ξ
tot

 < 0.03



  

Intrinsic sources of noise

 We assume that the beams 
from the injectors are round 
(ε

x
 = ε

y
)

 First, we assume that the beams are 
kept  round during luminosity 
production (Coupling, controlled 
noise,... )

 The effect of IBS and 
quantum excitation are 
negligible with initial beam 
parameters

→ They become comparable to the synchrotron damping rate 
only after few hours

→ Difficult to design an optics that is optimal for both round and 
flat beams



  

Intrinsic sources of noise

ε
x
 = ε

y

ε
x
 ≠ ε

y
 Letting the vertical emittance 

shrink leads to unequal 
beams after few hours

 The shrinkage of the vertical 
leads to a blow-up of the 
horizontal emittance (IBS)



  

Intrinsic sources of noise

 Similarly, letting the longitudinal 
emittance shrink leads to a blow-
up of the horizontal emittance 
(IBS)

 The performance is reduced 
by 10%

→ Control of the longitudinal and 
vertical emittances is required

ε
x
 = ε

y

ε
x
 ≠ ε

y
 Letting the vertical emittance 

shrink leads to unequal 
beams after few hours

 The shrinkage of the vertical 
leads to a blow-up of the 
horizontal emittance (IBS)

ε
s
 Controlled

ε
s
 Uncontrolled



  

Lifetimes

 Lifetime due to other loss 
mechanisms (Rest gas scattering, 
Touschek, non-linear diffusion, …) 
should be kept above ~20-30 
hours



  

Lifetimes

 Lifetime due to other loss 
mechanisms (Rest gas scattering, 
Touschek, non-linear diffusion, …) 
should be kept above ~20-30 
hours

 Emittance growth due to other 
mechanisms (Field ripple, 
ground motion, non-linear 
diffusion,...) should be kept 
above ~3-4 hours

→ Tight constraints on 
external noise sources



  

Performance
Ultimate 25 ns

 Achieving large 
beam-beam 
parameter and fast 
turn around are a 
key for the ultimate 
scenario

Configuration Performance 
[fb-1/day]

Baseline 2.3

 + β*=0.3 m 5.2

 + xi < 0.03 7.2

 + Crab cavity 7.9

 - 1h turn around time
    (→ Ultimate)

8.9

ξ
tot

 < 0.01

ξ
tot

 < 0.02

ξ
tot

 < 0.03



  

Performance
Small β*

 Small β* are profitable in 
configurations limited by the 
beam-beam parameters

 Assuming large beam-beam 
parameters, the scenario w/o 
crab cavities is already 
saturated due to the 
geometric loss factor

 Configurations with β*
x
≠β*

y 

should be considered 
 The β* could be adapted 

during the fill profiting from the 
larger aperture (smaller 
transverse emittance)

L = L
0
R

HG

 Approximated estimation 
of the hourglass effect :



  

Performance
Short bunches

 Assuming that the bunch length 
can shrink down to 1 cm, the 
configurations w/o crab cavities 
are no longer limited by the 
geometric factor



  

Performance
Short bunches

 Assuming that the bunch length 
can shrink down to 1 cm, the 
configurations w/o crab cavities 
are no longer limited by the 
geometric factor

Bunch length
Transverse 
emittance

 A configuration with β* = 
5 cm and σ

s
> 1cm can 

achieve the ultimate 
performance without crab 
cavity and large beam-
beam parameter



  

Short bunch spacing
5 ns

 Similar performance (5.1 fb-1/day) can be 
achieved with the nominal 5 ns configuration

Parameter Baseline 
5 ns

Energy [TeV] 50

Length [km] 100 

Bunch intensity [p] 1011/5

Normalised emittance [μm] 2.2 /5

Nb. bunches 10'600*5

Bunch length [cm] 8

Momentum spread 10-4

ξ
tot

0.01

Turn around [h] 5 

Number of IPs 2

β* [m] 1.1 (0.3) 

Long-range beam-beam 
separation [σ]

12 

ξ
tot

 < 0.01

ξ
tot

 < 0.02



  

Short bunch spacing
Ultimate 5 ns

 Similar performance as 
for the 25 ns 
configurations

 Ultimate configurations 
seems at the edge of the 
required performance

Configuration Performance 
[fb-1/day]

25 ns 5 ns

Baseline 2.3 2.3

 + β* = 0.3 5.2 5.1

 + xi < 0.03 7.2 6.0

 + Crab cavity 7.9 7.1

 - 1h turn around time
    (→ Ultimate)

8.9 8.0

ξ
tot

 < 0.01

ξ
tot

 < 0.02

ξ
tot

 < 0.03



  

Conclusion
 The target performance is comfortably achieved within the baseline scenarios 

(5 and 25 ns)

 β*=0.3 [m] seems reasonable and offers a factor ~2 margin

 Lower β* may increase further the performance when coupled with mitigations of 
the geometric reduction factor (crab cavities or short bunches)

→ Input from the experiments is critical (e.g luminous region length)

 Detailed studies of the beam-beam effects are required to define an optimal IR 
design (β*

x
≠β*

y
, crossing scheme,...)

 Intrabeam scattering can lead to a strong blowup of the horizontal emittance 
because of the shrinkage of the vertical (or longitudinal) emittance

→ Dedicated control mechanisms are required

 In all scenarios, the performance could be jeopardized by an external source 
of emittance growth → Need to evaluate constraints on the noise sources

 The maximum performance saturates at around 10 fb-1/day as the time spent 
colliding is smaller that the turn around time



  

Performance
Bunch intensity/Turn around

 The luminosity 
performance is close to 
linear with the bunch 
intensity

 The turn around time is 
a critical parameter, 
especially for high 
luminosity options
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