Energy Efficiency in Circular Particle Accelerators

John Seeman SLAC FCC Meeting in Rome April 12, 2016

The power and related energy usage of recent and future circular accelerators is becoming an ever increasing issue as the circumference and beam currents of these accelerators grow with each new generation. The demands and efficiencies of the various energy source terms in circular colliders will be covered. Power reduction possibilities will be evaluated looking several new ideas. Directions of future power studies will be discussed.

Inputs from:

- F. Zimmermann
- Q. Qin
- W. Chou
- M. Sullivan
- R. Erickson
- K. Oide
- A. Novokhatski
- M. Biagini
- M. Kemp
- E. Jensen
- T. Kageyama

Accelerator Efficiency Topics

Review recent actual or designed high current accelerators:

PEP-II (SLAC) SuperB (Frascati) (Design) KEKB → SuperKEKB (KEK) LEP (CERN) LHC (CERN)

New Proposals

CEPC (IHEP) (Design) FCC-ee (CERN) (Design) FCC-hh (CERN) (Design)

On going developments on accelerator efficiency: Beam physics (energy, HOMs, emittances) High Q cavities Depressed collector klystrons Solid-State Amplifiers (SSA) PEP-II klystron

PEP-II B-Factory (9 x 3 GeV) RF Klystrons \rightarrow (1.2 MW RF) (2 MW AC line)

HER = 10 klystrons, LER = 5 klystrons

SLAC campus = 15 MW Linac running at 30 Hz = 8 MW PEP-II magnets = 6 MW PEP-II RF = $(9 \times 3.1 \text{ GeV})$ $(2.8 \text{ A} \times 1.8 \text{ A}) = 29 \text{ MW}$ Utilities = 7MW Total (wall) = 50 MW

PEP-II RF Parameters (~2006) (McIntosh)

Table 1: PEP-II RF System Characteristics

RF Parameters		HER				LER				
		Jul 2004	Jul 2005	Jul 2006	Optimum 2006	Jul 2001	Jul 2004	Jul 2005	Jul 2006	Optimum 2006
RF Voltage/Ring (MV)	10.6	16	167	17.5	19.5	3.5	3.8	5.05	6.8	8.5
Number of Klystrons	5	8	9	10	10	3	3	4.	5	5
Number of Cavities	20	26	26	26	26	6	6	8	10	10
Average Gap Voltage/Cavity (kV)	530	615	642	673	750	583	633	631	680	850
Average Dissipated Power/Cavity (kW)	38	51	55	61	75	46	54	53	62	97
Average Beam Power/Cavity (kW)	161	215	222	233	279	186	289	270	264	340
Average Total RF Power/Cavity (kW)	199	266	277	294	354	231	343	323	326	437
Average Klystron Power (kW)	847	918	848	805	966	490	757	706	695	914
Beam Current (A)	0.9	1.55	16	1.68	2	1.62	2.45	3	3.6	4.5
Luminosity (10 ³³ cm ⁻² s ⁻¹)	3.399	9.213	12.5	15.8	23.5	3.399	9.213	12.5	15.8	23.5

July 2006 luminosity projections were unrealized.

Approximate Design SuperB Factory Site Power (3 km ring)

Campus +detector = 5 MW Linac and e+ at 30 Hz = 10 MW Magnets (~1.5 x PEP-II) = 10 MW RF (4 x 7 GeV) (2.5 A x 1.4 A) = 22.4 x 2=45 MW Cooling = 5 MW Total = ~75 MW

Frascati

RF AC efficiency = 50% =(65% klystron+90% power supply + 15% off klystron peak for beam stability feedback)

SuperB proposed at Frascati (M. Biagini April 2006)

SLAC

	SBF 4 GeV	SBF 7 GeV]
C (m)	3006.	3006.	1
₿ _₩ (T)	1.6	1.6]
L _{bend} (m)	5.6	11.2]
Baand (T)	0.078	0.136	
Uo (MeV/turn)	4.6	7.8	
N. wigg. cells	8	4	
$\mathfrak{I}_{x}(ms)$	17.5	18.]
ǥ _s (ms)	8.8	9.	1
ε _x (nm)	0.54	0.54]
۵	1.1×10 3	1.45×10 ⁻³	cm @==0.9x10
I _{beam} (A)	2.5	1.4]
Pbeam(MW)	11.5	10.9	
Total Wall Po	wer (66% t	ransfer eff.)	: 34 MW

AC efficiency is about 50% =(65% klystron+90% power supply + 15% off klystron peak for beam stability feedback)

SuperB RF Parameters (A. Novokhatski)

HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	H
Total	Zero I		Max	Number			Total	Total	Total	forward	reflected	L
RF	Bunch	Bunch	voltage	of	S.R.	HOMs	cavity	reflected	forward	to one	from	Т
voltage	length	spacing	per cavity	cavities	power	power	loss	power	power	cavity	one	for
MV	mm	ns	MV	klystrons	MW	MW	MW	MW	MW	MW	MW	N
	4.69											
7.01	4.78	4.20	0.58	12.00	3.99	0.27	0.54	0.36	5.16	0.43	0.03	8
	5.00			6.00								
												Н
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	I
Total	Zero I		Max	Number			Total	Total	Total	forward	reflected	P
RF	Bunch	Bunch	voltage	of	S.R.	HOMs	cavity	reflected	forward	to one	from	P
voltage	length	spacing	per cavity	cavities	power	power	loss	power	power	cavity	one	eff.⁄
MV	mm	nsec	MV	klystrons	MW	MW	MW	MW	MW	MW	MW	N
	4.29											
5.25	4.71	4.20	0.66	8.00	2.12	0.41	0.45	0.05	3.03	0.38	0.01	1
	5.00			4.00								

Sasha Novokhatski "RF. Impedance"

Ð

SuperKEKB ARES and SC RF Cavity Systems

KEKB and SuperKEKB Beam Parameters

		КЕКВ		Nano-	beam	
		LER	HER	LER	HER	
Energy	GeV	3.5	8	4	7	>
Beam current	А	1.8	1.4	3.60	2.62	
Bunch length	mm	6~7	6~7	6	5	
No. bunches		15	84	25	03	
Energy loss/turn	MV	1.64	3.48	2.15	2.50	
Radiation Loss	MW	2.95	4.87	7.74	6.55	= 17 MW
Loss factor, assumed	V/pC	-	-	35	40	\rightarrow 35 MW wall
Parasitic Loss	MW	-	-	1.82	1.10	
Total Beam Power	MW	~ 3.5	~ 5.0	9.56	7.65	
RF Voltage	MV	8.0	13~15	8.4	6.7	

CERN Energy Consumption (Zimmermann...)

CERN recent energy consumption

CEPC (IHEP) Power from Pre-CDR (2015)

Table 5.2.2: CEPC collider SRF system parameters

SLAC

Figure 5.2.1: RF power source configuration

CEPC Linac RF Power Source

Figure 5.2.3: Simplified schematic of the Linac RF power source

Table 5.2.7: Parameters of 80 MW klystron

Parameters	Value
Frequency (MHz)	2856
Output power (MW)	80
Efficiency (%)	42
Gain (dB)	53
Pulse length (us)	4
Pulse rate (pps)	100
Beam voltage (kV)	400
Beam current (A)	488
Drive power (W)	350

 Table 5.2.8: Main specifications of the modulator

Parameters	Value
Peak output power (MW)	200
Average output power (kW)	80
PFN charging voltage (kV)	50
PFN impedance (Ω)	2.85
Pulse width (us)	>4 µs (flat top)
Pulse flatness (%)	± 0.15
Pulse rate (pps)	100
Pulse transformer turns ratio	1:17

CEPC Injector ring power (solid state amplifiers SSA)

Figure 5.2.2: 25 kW amplifier basic topology

The output of the each module drives a common WR650 waveguide into superconducting cavity. The amplifier specifications are listed in Table 5.2.6.

Table 5.2.6:	Specifications	of the Amplifier
--------------	----------------	------------------

Parameters	Value
Operating Frequency	1300 MHz +/- 0.5 MHz
Gain	67 dB
Efficiency	40% at 25 kW

Work in industry ongoing to improve SSA efficiency

SLAC

Table 5.2.5: CEPC Booster SRF system parameters

Parameters	Value
Operation frequency	1300 MHz +/- 0.5 MHz
Cavity Type	1.3 GHz 9-cell
Cavity number	256
RF input power (kW)	20 peak/cavity
RF source number	256 (25 kW SSA)

CEPC Cryogenic Heat Load

 Table 5.3.1: Parameters of the Booster and collider ring cavities

Table 5.3.2: CEPC heat load

	I Init	Init BOOSTER				COLLIDER		
	Unit	40-80K	5-8K	2K	40-80K	5-8K	2K	
Module static heat load	W	140	20	3	200	40	8	
Module dynamic heat load	W	140	10	30.88	200	40	62.4	
HOM loss per module	W	52.8	3.2	7.2	390	39	13	
Connection boxes	W	50	10	10	50	10	10	
Total heat load	KW	11.45	1.22	1.47	78.2	11.9	8.48	
Overall net cryogenic capacity multiplier		1.54	1.54	1.54	1.54	1.54	1.54	
4.5 K equivalent heat load with multiplier	KW	1.34	1.74	7.3	9.12	16.97	42.13	
Total 4.5 K equivalent heat load with multiplier	KW	10.38 68		68.22				
Total heat load of Booster and collider	KW	78.6						

CEPC Cryogenic Efficiency (COP at 4.5 Kdeg)

Figure 5.3.5: Refrigerator COP at 4.5 K

Table 5.3.3:	Cryogenic s	system installed	power rec	uirements
1 4010 010101	crjogeme .	system mouned	pomer 100	anemento

	40-80 K	5-8 K	2 K
Booster heat load (kW)	17.63	1.88	2.26
Collider heat load (kW)	120.43	18.33	13.06
CEPC TOTAL (kW)	138.06	20.21	15.32
COP (W/W)	16.4	197.9	703.0
Installed power (MW)	2.26	4.00	10.77
Total installed power (MW)	17.63		

FCC-ee RF & cryo power (example) (Zimmermann...)

	Z	W	ZH	ttbar						
total voltage / beam [GV]	0.2	0.8	3	10						
no. cavities / beam	75	150	400	670						
RF frequency [MHz]	400									
cells / cavity	1	2								
cavity length [m]	0.38	0.75	0.75	0.75						
Q ₀ [10 ⁹]	3	3	3	3						
material & temperature										
gradient [MV/m]	7.0	7.1	10	10						
voltage / cavity [MV]	2.7	5.3	7.5	7.5						
input power / cavity [MW]	0.67	0.33	0.125	0.075						
R/Q [Ω] linac	87		169							
matched Q _L	1.3x10 ⁵	5.0x10⁵	2.7x10 ⁶	4.4x10 ⁶						
HOM loss / cavity [kW]	3.1	1.0	0.34	0.16						
total HOM power [MW]	0.5	0.3	0.3	0.22						
dynamic/static cryo power	1, 1	4, 1	20, 3	33, 6						
total cryo power [MW]	2	5	23	39						

Reminder: LEP2 cavities (Zimmermann ...)

288 4-cell 352 MHz standing-wave cavities, Nb/Cu at 4.5 K

Number of cavities operating at a given gradient for three different beam energies in 1999 and 2000.

Average gradient: 7.5 MV/m (> 6 MV/m nominal) best cavities 9 MV/m in operation

LEP2 cavities cont'd (Zimmerman ...)

Histogram of Q-values at 6 and 7 MV/m accelerating gradient

Measured average Q values: 3.7e9 at 6 MV/m 3.1e9 at 7 MV/m

Rough power estimate for FCC-ee [MW] (Zimmermann ...)

Z	W	ZH	tĪ	LEP2 (av.2000*)	TLEPt $ar{t}$ * M. Ross	TLEP <i>tt</i> ** 2013
163	163	145	145	42	217	185
2	5	23 39		18 41		34
3	3 10		50	16	14	14
4	4	6	7 -		5	5
0	1	2	5	-	-	-
10	10	10	10	<10	?	?
10	10	10	10	9	?	?
47	49	52	62	16	62	26
36	36	36	.36	9	20	20
275	288	308	364	120	359	284
	Z 163 2 3 3 4 0 10 10 10 10 47 36 275	ZW1631632531044011010101047493636275288	ZWZH163163145252331023446012101010101010474952363636275288308	ZWZHtī163163145145252339310235044670125101010101010101047495262363636364	ZWZHt̄tLEP2 (av.2000*)1631631451454225233918310235016467-0125-1010101010101010947495262163636369275288308364120	Z W ZH t̄ LEP2 (av.2000*) TLEPtī *M. Ross 163 163 145 42 217 2 5 23 39 18 41 3 10 23 50 163 145 4 6 7 - 5 5 0 1 2 5 - 5 10 10 10 10 - 5 10 10 10 10 - - 10 10 10 10 - - 10 10 10 9 - - 47 49 52 62 16 62 36 36 36 9 20 - 275 288 308 364 120 359

*dividing total energy used by 200 days

For comparison, total CERN complex in 1998 used up to 237 MW

subsystem	FCC-hh	LHC (2015*)
magnet systems (w/o injectors & TLs)	15	5
collider cryogenics	200	36
RF system	12	6
cooling	35	7
ventilation	15	4
general services	40	11
physics experiments (4)	50	21
injector complex	110	60
total	465 (=110+355)	150 (=60+90)

*P. Lebrun, "Summary of LHC power consumption and scaling to FCC-hh," FCC IOWG, 29 July 2015

	PEP-II	SuperB	LEP-2	LHC	CEPC	FCC-ee- ZH	FCC- hh
RF	29	45	42	6	247	145	12
Cryo	0.5	1	18	36	19	23	200
Magnets	6	10	16	5	64	23	15
Cooling	2	2	9	7	41	30	35
Ventilation	0.5	1	7	4	31	20	15
General	2	2	9	11	18	36	40
Detector	2	3	9	21	14	10	50
Injector	8	10	10	60	35	22	110
Total	50	74	120	150	469	308	465

- High Q SC cavities
- New klystron design
- New klystron depressed collector
- Longer rings with smaller beam emittances

Improving Q of CW SC Cavities (FNAL, Cornell, JLAB,...)

Applying N doping to 650 MHz (beta=0.9) leads to Q x3 exceeding specs

High duty factor operation (30%) may be possible even with the existing (limited) capacity cryoplant!

Reduces cryo-plant requirements

80MW 55% Efficient S-Band Source (Jensen, Neilson)(SLAC)

- Increase RF output power of the 5045 from 60MW to 80MW
- Increase RF efficiency of the 5045 from 45% to 55%
- Add 4 new RF cells to the body design
- Add a new high power RF window
- Modified tube "plug compatible" with existing socket
- Test modules under construction

SLAC 5045 60MW S-band tube

Project Scope - Existing 5045 Klystron

Depressed Collector Klystron (Kemp, Jensen, Neilson) (SLAC)

Old idea but with new applications (SLAC new study) Depressed collector klystrons can improve power efficiency for both CW and pulsed accelerators Reduced heat loading Reduces parasitic emitted radiation New: Allows improved modulator pulse shape New: Uses feedforward energy recovery system New: Multiple anodes with self powering (voltage)

Modeled by 2D PIC codes

 $45\% \rightarrow 57\%$ efficient

Model under construction (80 MW, 55%, 2856 MHz)

Figure 1. Block diagram of a pulsed depressed collector.

 Table 1. Calculated improvements in system

 efficiency for two SLAC klystrons.

	XL4	5045
Peak Power (nom.)	50MW	58MW
Klystron efficiency	41%	45%
System Efficiency	29%	37%
(no recovery)		
Depressed Collector	55%	55%
Efficiency (assumed)		
System Efficiency	50%	57%
(with recovery)		
Collector Power	22 kW	41 kW
(no recovery)		
Collector Power	8.8 kW	16 kW
(with recovery)		

Ongoing efforts to increase accelerator efficiency:

- Larger rings are more efficient with lower RF and emittances but cost more to build
 Improved cavity Qs
 Improved higher efficiency klystrons (cw)
 Depressed collectors (pulsed, cw)
 Improved Solid State Amplifiers
 - Improved cryo-plants for better cryo energy usage

FCC Specific Issues for Power (Zimmermann ...)

machine specific																
	hh		Z			w				н				t		
Ebeam [GeV]		45.5			80.0			120.0					176.0			
beam [mA]		1450.0			152.0			30.0					6.6			
Nb bunches		91500				5162 770							78			
RF voltage [GV]	0.032	0.20			0.80					3.00			10.00			
Energy loss/turn [GeV]		0.034			0.33					1.67			7.55			
Bunch Length (mm)			3.00		3.00					3.00			3.00			
	hh		7			W				н			+			
Technology&design	1.001.4003445															
cavity choice	1 cell, 400WIHZ,	Li cell, 400MHz,	z celis, 400ivinz,	z cells, ouuvinz, bi	1 cell, 400WHZ,	z cens, 400mmz,	z celis, autoriz, b	1 cell, 400ivinz,	z celis, 400ivinz, i	z celis, autoritz, ND/	z celis, autoriz, n	2 cells, autoritz, b	1 cell, 400MHz, N	z celis, 400MHz,	Z CEIIS, 800IVITIZ, I	
frequency (MHz)	ND/CU 400	ND/CU 400	ND/CU	800	100	ND/CU 400	ND 900	ND/Cu	ND/CU	ND/CU	ND/CU	ND	ND/CU	ND/CU	ND	
rrequency [MHz]	400	400	400	800	400	400	800	400	400	800	800	800	400	400	800	
ND cells/cavity	10	1	2	2	1	2	2	1	4	4	4	2	1	2	2	
Eacc [MV/m]	10	0	10	20	10	10	20	10	10	10	10	20	10	10	20	
k/Q [Unm/cell]	8/	8/	85	65	8/	85	85	8/	85	85	85	85	8/	85	85	
k// [V/pC]	0.4	0.4	0.8	1.2	0.4	0.8	1.2	0.4	0.8	1.2	1.2	1.2	0.4	0.8	1.2	
Pfpc max [kW]	500	500	500	400	500	500	400	500	500	400	400	400	500	500	400	
G [Ohm]	297	297	297	297	297	297	297	297	297	297	297	297	297	297	297	
Rs [nOhm]	94	94	94	23	94	94	23	94	94	288	64	23	94	94	23	
Qo (=G/Rs)	3.1E+09	3.1E+09	3.1E+09	1.3E+10	3.1E+09	3.1E+09	1.3E+10	3.1E+09	3.1E+09	1.0E+09	4.7E+09	1.3E+10	3.1E+09	3.1E+09	1.3E+10	
Operating Temp [K]	4.5	4.5	4.5	2	4.5	4.5	2	4.5	4.5	4.5	2	2	4.5	4.5	2	
Carnot efficiency	1.52%	1.52%	1.52%	0.67%	1.52%	1.52%	0.67%	1.52%	1.52%	1.52%	0.67%	0.67%	1.52%	1.52%	0.67%	
Cryo efficiency [%]	30%	30%	30%	20%	30%	30%	20%	30%	30%	30%	20%	20%	30%	30%	20%	
RF system parameters			-			-										
Lcell [m]	0.375	0.375	0.375	0.1875	0.375	0.375	0.1875	0.375	0.375	0.1875	0.1875	0.1875	0.375	0.375	0.1875	
Lacc [m]	0.375	0.375	0.75	0.375	0.375	0.75	0.375	0.375	0.75	0.375	0.375	0.375	0.375	0.75	0.375	
Vcell [MV]	3.75	2.25	3.75	3.75	3.75	3.75	3.75	3.75	3.75	1.88	1.88	3.75	3.75	3.75	3.75	
Vcav [MV]	3.75	2.25	7.50	7.50	3.75	7.50	7.50	3.75	7.50	3.75	3.75	7.50	3.75	7.50	7.50	
Pbeam [MW]		49.3	49.3	49.3	50.16	50.16	50.16	50.1	50.1	50.1	50.1	50.1	49.83	49.83	49.83	
matched Qext	2E4 - 9E4	1.0E+05	1.8E+05	1.8E+05	6.9E+05	7.0E+05	7.0E+05	2.6E+06	2.6E+06	1.3E+06	1.3E+06	2.6E+06	8.7E+06	8.9E+06	8.9E+06	
BW @ matched Qext		3813	2235	4470	582	568	1137	155	151	606	606	303	46	45	90	
Nb cells	32	89	53	53	213	213	213	800	800	1600	1600	800	2667	2667	2667	
Nb cavities	32	89	27	27	213	107	107	800	400	800	800	400	2667	1333	1333	
Dyn Losses/cavity [W]	51.4	18.5	105.2	25.9	51.4	105.2	25.9	51.4	105.2	80.2	17.8	25.9	51.4	105.2	25.9	
RF system active length [m]	12	33	20	10	80	80	40	300	300	300	300	150	1000	1000	500	
RF system length [m]	57	158	57	34	379	229	136	1420	860	1020	1020	510	4733	2867	1700	
Pcryo dyn [kW] @ operating temp	1.65	1.65	2.81	0.69	10.97	11.23	2.76	41.13	42.10	64.18	14.22	10.35	137.10	140.32	34.51	
Pcryo stat [kW] @ operating temp	0.28	0.79	0.29	0.17	1.89	1.15	0.68	7.10	4.30	5.10	5.10	2.55	23.67	14.33	8.50	
Pcryo tot [kW] @ operating temp	1.93	2.43	3.09	0.86	12.86	12.37	3.44	48.23	46.40	69.28	19.32	12.90	160.77	154.66	43.01	
Pcryo tot [MW] @ RT	0.4	0.5	0.7	0.6	2.8	2.7	2.6	10.6	10.2	15.2	14.4	9.6	35.2	33.9	32.0	
Pcav [kW] (optimum)	500	555	1849	1849	235	470	470	63	125	63	63	125	19	37	37	
Phom [kW]		3.1	6.1	9.2	0.6	1.2	1.8	0.2	0.3	0.5	0.5	0.5	0.1	0.1	0.2	