The Search for Sterile Neutrinos at Future Circular Colliders

Oliver Fischer

University of Basel, Switzerland

FCC Week 2016, Rome, April the 12th, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation for Sterile Neutrinos

- Neutrino oscillations are evidence for new physics.
 At least two light neutrinos massive.
- Mass generation mechanism requires an extension of the SM.
- Elegant and economic: sterile (or right-handed) neutrinos.
- Many studies on collider phenomenology.

Sterile Neutrinos at colliders

Incomplete author list:

Abada, Abazajian, Acero, Adhikari, Agarwalla, Aguilar-Arevalo, Aguilar-Saavedra, Akhmedov, Albright, Antusch, Aoki, Arguelles-Balantekin, Asaka, Atre, Basso, Biggio, Blanchet, Blondel, Blum, Bonivento, Bonnet, Borah, Boyanovsky, Boyarsky, Cely, Chen, Cheung, Das, delAguilar, DeRomeri, Dev, Dijkstra, Drewes, Egede, Fan, Ferro-Luzzi, Franceschini, Gariazzo, Gavela, Giunti, Goddard, Golutvin, Gorbunov, Gorbunov, Graverini, Hall, Hambye, Han, He, Hernandez, Hernandez, Hoang, Hung, Ibarra, Jacobsson, Kamat, Kanemura, Kartavtsev, King, Kopp, Laveder, Lello, Lindner, Ma, Merle, Michaels, Mohapatra, Molinaro, Monteil, Murakami, Murase, Nemevsek, Okada, Orloff, Panman, Pascoli, Petcov, Pinner, Pittau, Reece, Rodejohann, Schwetz-Mangold, Serra, Seto, Shaposhnikov, Smirnov, Sun, Tait, Tandean, Teixeira, Tenchini, Timiryasov, Tsai, van der Bij, Vicente, Wang, Weiland, Yanagida, Zhang, ...

... and others. Appologies to those who are not on the list!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Symmetry Protected Seesaw Scenario

Benchmark model, defined in Antusch, OF: JHEP 1505 (2015) 053 Similar to e.g.: Mohapatra, Valle (1986); Malinsky, Romao Valle (2005); Shaposhnikov (2007);

Assumption: collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_{N} = -\frac{1}{2}\overline{N_{R}^{1}}M(N_{R}^{2})^{c} - y_{\alpha}\overline{N_{R}^{1}}\widetilde{\phi}^{\dagger}L^{\alpha} + \mathrm{H.c.}$$

- Further "decoupled" sterile neutrinos may exist.
- The leptonic mixing matrix to leading order in the active-sterile mixing parameters θ_{α} :

$$\mathcal{U} = \begin{pmatrix} \mathcal{N}_{e1} & \mathcal{N}_{e2} & \mathcal{N}_{e3} & -\frac{i}{\sqrt{2}}\theta_e & \frac{1}{\sqrt{2}}\theta_e \\ \mathcal{N}_{\mu1} & \mathcal{N}_{\mu2} & \mathcal{N}_{\mu3} & -\frac{i}{\sqrt{2}}\theta_\mu & \frac{1}{\sqrt{2}}\theta_\mu \\ \mathcal{N}_{\tau1} & \mathcal{N}_{\tau2} & \mathcal{N}_{\tau3} & -\frac{i}{\sqrt{2}}\theta_\tau & \frac{1}{\sqrt{2}}\theta_\tau \\ 0 & 0 & 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_e^* & -\theta_\mu^* & -\theta_\tau^* & -\frac{i}{\sqrt{2}}\left(1 - \frac{\theta^2}{2}\right) & \frac{1}{\sqrt{2}}\left(1 - \frac{\theta^2}{2}\right) \end{pmatrix}$$

Present Constraints

Global fit to precision data:

- Electroweak Precision Observables (mainly LEP).
- Non-universality observables (decays of μ, τ, π, K).
- Rare charged lepton flavour violating decays.
- CKM unitarity tests.
- Low energy measurements of the weak mixing angle.

Direct Searches:

- Z pole searches at LEP I.
- Four fermion final states at LEP II.
- Higgs boson branching rations at the LHC.
- Many beam-dump experiments at lower energies.

Present Constraints: Summary Plot

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

* Currently dominated by $h \rightarrow \gamma \gamma$.

Heavy Neutrino Production at the FCC-ee

- ▶ At the Z pole run: efficient production via s-channel Z boson.
- At higher energies: t-channel W boson exchange.
- ► Higher center-of-mass energies ⇒ enhanced mass reach and logarithmic growth of the production cross section.

Search Strategies for heavy neutrinos at the FCC-ee

Modi operandi:

- Z pole run: $\sqrt{s} = m_Z$, 100 ab⁻¹
- Higgs run: $\sqrt{s} = 240 \text{ GeV}$, 10 ab⁻¹
- **Top threshold scan:** $\sqrt{s} = 350$ GeV, 3.5 ab⁻¹
- High energy run: $\sqrt{s} = 500$ GeV, 1.0 ab⁻¹

Signatures:

- Electroweak Precision Observables:
- ► Lepton flavour violating Z decays: ■.
- ► "Long-lived" heavy neutrinos with displaced vertices (=).

- ► Higgs production cross section and decays: = (■ ■).
- WW-like signatures: $\ell^{\pm} j j$ and $\ell^{+} \ell^{-}$ plus $\not E$:

Prospects of Sensitivity at the FCC-ee: Update

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Heavy Neutrino Production at hadron colliders

Search strategies:

- Displaced vertices
- Lepton-Number-Violation
- Lepton-Flavour-Violation ($H \rightarrow \mu \tau$ excess?)
- Boosted mono-Higgs, or mono-Z bosons (ATLAS 3σ excess?).

Drawbacks:

- QCD backgrounds necessitate large integrated luminosities.
- Suppressed production cross section for large *M*.

Heavy Neutrino Production in hadronic Collisions

- In hadron-hadron collisions: $|\theta|^2 = \sum_{\alpha} |\theta_{\alpha}|^2$.
- ▶ SM Backgrounds: $p p \rightarrow W^+W^-$: 750 pb @ LHC14, 800 pb @ FCC-hh $p p \rightarrow Z Z$:10 pb @ LHC14, 125 pb @ FCC-hh
- Global fit prefers $|\theta_e|^2 \sim 10^{-3}$ at 2 to 3 σ .

Antusch, OF; JHEP **1410** (2014) 094. Basso, OF, van der Bij; Europhys. Lett. **105** (2014) no.1, 11001

Heavy Neutrino Production in electron-proton Collisions

- The Large Hadron electron Collider: \sqrt{s} up to 1.0 TeV.
- The Future Circular electron proton Collider: $\sqrt{s} = 3.5$ TeV.
- Heavy neutrino produced via the charged current.
- Electron-hadron collisions are sensitive to $|\theta_e|$.
- SM Background:

 $e^-\:p\to\nu_e\:X\:W^-\colon\sim$ 3 pb @ LHeC3.5, 33 pb @ FCC-eh

Summary and Conclusions

- Sterile neutrinos are well motivated extensions of the SM.
- Symmetry protected seesaw scenarios allow for electroweak scale sterile neutrino masses and O(1) active-sterile mixings.
- Heavy neutrinos can be searched for via ...
 - ... their decay products (direct searches).
 - ... modifications of SM processes (indirect searches).
- Future lepton colliders:
 - \star Electroweak precision observables.
 - \star Z pole searches (conventional and displaced vertices).
 - ★ Mono-Higgs production and Higgs decays.
 - \star WW-like signatures
- Future hadron colliders:
 - \star Drell-Yan production, rapid "drop off" for lage *M*.
 - $\star\,$ flavour democratic, Discovery via LNV, LFV, mono-Z.
- Future electron-proton colliders provide significant gain in mass reach and fairly "stable" production cross sections.
- ⇒ The FCCs provide great prospects for discovering the origin of neutrino masses.

Thank you for your attention.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Backup I - Heavy neutrino interactions

Charged current (CC):

$$j_{\mu}^{\pm} = \frac{g}{2} \, \theta_{\alpha} \, \bar{\ell}_{\alpha} \, \gamma_{\mu} \left(-\mathrm{i} N_{1} + N_{2} \right)$$

Neutral current (NC):

$$j_{\mu}^{0} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

Higgs boson Yukawa interaction:

$$\mathscr{L}_{\mathrm{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\mathrm{EW}}} \nu_{i} \phi^{0} \left(\overline{N}_{1} + \overline{N}_{2} \right)$$

• With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}^*_{\alpha \beta} \frac{\theta_{\beta}}{\sqrt{2}}, \ \xi_{\alpha 2} = i \xi_{\alpha 1}$

Next: Important processes to search for sterile neutrinos at present and future colliders

Backup II - EWPO

Experimental results and SM predictions for the EWPO, and the modification^{*}, to first order in the "non-unitarity" parameters $\varepsilon_{\alpha\alpha} = \theta^*_{\alpha}\theta_{\beta}$. (formulae for $M \gg m_Z$)

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell \right]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$[R_b]_{\mathrm{SM}} (1 + 0.03(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	0.21577(4)	0.21629(66)
$\left[R_{c} ight]_{\mathrm{SM}} \left(1 - 0.06 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} \left(1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau}\right)/{\rm nb}$	41.470(15)	41.541(37)
$\left[R_{inv} ight]_{ m SM}^{ m SM}(1+0.75(arepsilon_{ee}+arepsilon_{\mu\mu})+0.67arepsilon_{ au})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[{\sf \Gamma}_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{\sf MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_{\mathrm{SM}}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

* Minimal Unitarity Violation scheme: Antusch et al.; JHEP 0610 (2006) 084.

Backup III - lepton universality

Modification due to sterile neutrinos (formulae for $M \gg m_Z$):

$$R_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_\tau \mu \bar{\nu}_\mu)}{\Gamma(\tau \to \nu_\tau e \bar{\nu}_e)}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})}$	1.0021(16)
$R^\ell_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_{\tau} e \bar{\nu}_{e})}{\Gamma(\mu \to \nu_{\mu} e \bar{\nu}_{e})}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_\tau \pi)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$	0.9956(31)
$R^W_{e\mu}$	$\frac{\Gamma(W \to e\bar{\nu}_e)}{\Gamma(W \to \mu\bar{\nu}_\mu)}$	1.0085(93)	$R^{K}_{ au\mu}$	$rac{\Gamma(au o K u_ au)}{\Gamma(K o \mu ar{ u}_\mu)}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W \to \tau \bar{\nu}_{\tau})}{\Gamma(W \to \mu \bar{\nu}_{e})}$	1.032(11)	$R_{ au e}^K$	$rac{\Gamma(au o K u_ au)}{\Gamma(K o e ar{ u}_e)}$	1.018(42)

Backup IV - CKM unitarity constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\text{process}}(\varepsilon_{\alpha\alpha})) ,\\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} .\\ \text{For the kaon decay processes we have:} \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{\mu\mu} ,\\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$	
$K_L ightarrow \pi e u$	0.2163(6)	
$K_L \rightarrow \pi \mu \nu$	0.2166(6)	
$K_S ightarrow \pi e u$	0.2155(13)	
$K^{\pm} ightarrow \pi e u$	0.2160(11)	
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)	
Average	0.2163(5)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Processes involving tau leptons:

Process	$f^{ m process}(arepsilon)$	$ V_{us} $
$\frac{B(\tau \rightarrow K \nu)}{B(\tau \rightarrow \pi \nu)}$	$arepsilon_{\mu\mu}$	0.2262(13)
au ightarrow K u	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$ au o \ell, au o s$	$0.2arepsilon_{ee} - 0.9arepsilon_{\mu\mu} - 0.2arepsilon_{ au au}$	0.2173(22)

Backup V - lepton flavour violation

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{\alpha\beta} $
$\mu ightarrow e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$ au ightarrow {\it e} \gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	$1.5 imes 10^{-8}$	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}ertarepsilon_{ au\mu}ert^2$	$1.8 imes 10^{-8}$	$arepsilon_{ au\mu} < 6.6 imes 10^{-3}$

Present experimental limits at 90% C.L.:

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	10 ⁻⁹	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5}ertarepsilon_{\mu e}ert^2$	10^{-16}	$arepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.