Testable SUSY spectra from GUTs at the FCC-hh

Stefan Antusch

University of Basel Department of Physics

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

We will discuss an example where a GUT scenario predicts a SUSY spectrum which may be fully testable at the FCC-hh

We will go through the general arguments behind this result and discuss how it may generalize to other GUT models

S. A., C. Sluka, (arXiv:1512.06727; arXiv:1604.00212)

Content

- Supersymmetry (SUSY): motivation; future discovery reach
- Predictive GUT models for quark-lepton mass ratios
- SUSY threshold corrections: the link between GUTs and the SUSY spectrum
- Results of a recent analysis; general arguments

SUSY

Attractive features include:

- Ameliorates/solves hierarchy problem
- SUSY changes RG running → Simple schemes of gauge coupling unification (GUTs) → GUTs compatible with proton decay

However:

- SUSY has to be broken (mass of SUSY particles free parameter)
- No signs of SUSY found so far ...

Great reach at a 100 TeV pp collider:

SUSY spectra can be probed up to O(10 TeV)!

See e.g.: arXiv:1311.6480, arXiv:1406.4512, arXiv:1506.02644

Example: Gluino discovery reach

From: Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker (arXiv:1311.6480)

Grand Unified Theories (GUTs)

- Unification of the three forces of the Standard Model
 - (→ Gauge coupling unification)
- Unification of quarks and leptons in joint multiplets at high energy

... two consequences

1) Predictions for the quark-lepton Yukawa coupling ratios

Examples (in SU(5) GUTs):

$$y_{33} \ \overline{\mathbf{5}}_3 \ \mathbf{10}_3 \langle \overline{H}_5 \rangle \Rightarrow \left[\frac{m_{\tau}}{m_b} \right]_{M_{GUT}} = 1$$

"b-т unification", Georgi, Glashow ('74)

$$y_{22} \ \overline{\mathbf{5}}_2 \ \mathbf{10}_2 \langle \overline{H}_{45} \rangle \Rightarrow \left[\frac{m_{\mu}}{m_s} \right]_{M_{GUT}} = 3$$

Georgi, Jarlskog ('79)

$$y_{33} \ \overline{\mathbf{5}}_3 \frac{\langle H_{24} \rangle}{\Lambda} \mathbf{10}_3 \langle \overline{H}_5 \rangle \Rightarrow \left[\frac{m_{\tau}}{m_b} \Big|_{M_{GUT}} = \frac{3}{2} \right]$$

S. A., Spinrath (arXiv:0902.4644)

Other examples: e.g. $m_{\mu}/m_{s} = 9/2$ or 6, $m_{e}/m_{d} = \frac{1}{2}$ or $\frac{1}{3}$, ...

cf.: S. A., Spinrath (arXiv:0902.4644); S. A., King, Spinrath (arXiv:1311.0877)

... two consequences

→ 2) Constraints on the boundary conditions for the soft breaking parameters at M_{GUT}: e.g. only one m²₁₆ in SO(10), m²₅ and m²₁₀ in SU(5); flavour symmetries often imply (partial) flavour universality!

... two consequences

→ 2) Constraints on the boundary conditions for the soft breaking parameters at M_{GUT}: e.g. only one m²₁₆ in SO(10), m²₅ and m²₁₀ in SU(5); flavour symmetries often imply (partial) flavour universality!

In our discussion, we will assume that the GUT scenario predicts quark lepton mass ratios at M_{GUT} for all three generations.

We will also assume that the soft SUSY parameters at M_{GUT} are CMSSM(-like).

RG running and SUSY loop threshold corrections: Link to the SUSY spectrum

Procedure: RG running from high to low energies

SUSY scale (sparticle masses)

Exp. Data (E ~ O(v_{EW}))

RG running and SUSY loop threshold corrections: Link to the SUSY spectrum

At the SUSY scale:

SUSY threshold effects at M_{SUSY} depend on the SUSY parameters, i.e. on the spectrum, tan β , and can strongly affect the low scale results for the quark and lepton masses!

Hall, Rattazzi, Sarid ('93),

Carena et al ('94), Blazek et al ('95),

Example GUT scenario

We consider GUT models which feature the following quark-lepton mass relations at M_{GUT} , m_{T}/m_{b} ,= 3/2, m_{μ}/m_{s} = 6, m_{e}/m_{d} = $\frac{1}{2}$,

as well as CMSSM boundary conditions for the soft SUSY breaking parameters (i.e. parameters are then m_0 , $m_{1/2}$, A_0 and $\tan \beta$).

Model examples: see Refs given in arXiv:1512.06727

Analysis

➤ RG running and SUSY loop threshold corrections with *REAP* extension *SusyTC*REAP: S. A., Kersten, Lindner, Ratz, Schmidt (hep-ph/0501272)

SusyTC: S.A., C. Sluka (1512.06727)

Calculation of m_h at 2-loop performed with FeynHiggs 2.11.2

FeynHiggs: Heinemeyer, Hahn, Rzehak, Weiglein, Hollik

- Vacua metastable, lifetime constraints checked
- **>** ...

For more details: S. A., C. Sluka, (arXiv:1512.06727)

Results of MC Monte Carlo analysis: CMSSM parameters

General argument: SUSY spectra from predictive GUTs

GUT predictions for quark-lepton mass ratios require some amount of SUSY loop threshold corrections for each generation.

This implies that SUSY spectrum cannot be "too split". More specifically, the <u>ratios</u> of trilinear couplings, gaugino masses, μ and sfermion masses get constrained. Also tan β cannot be too small.

In a CMSSM-like scenario \rightarrow ratios between m₀, m_{1/2} and A₀ are constrained

➤ With the above-described constraints, obtaining the measured value of the mass m_h of the SM-like Higgs fixes the overall SUSY scale!

The combination of the two effects can result in a predicted sparticle spectrum from GUT models!

S. A., C. Sluka, (arXiv:1512.06727; 1604.00212)

Summary

- We discussed how certain classes of predictive GUT models are capable of predicting a SUSY spectrum fully testable at a 100 TeV pp collider, like the FCC-hh.
- The predictions for the sparticle spectrum can be understood as follows:
 - Predictive GUTs fix the quark lepton mass ratios at high energy (M_{GUT})
 - They require SUSY threshold corrections, which imply constraints on the SUSY spectrum
 - Adding constraints from m_h, the combined constraints can be powerful enough to predict the sparticle spectrum!
- Ongoing: Investigation of other example GUT scenarios

Thanks for your attention!