	Model description			Future wo
C .				
Simulation of Residual Gas Particles in an				
Ultrahigh Vacuum System				
Theory behind the Analytical Solution Approach				

Ida Aichinger

FCC week, Rome

14. April, 2016

FCC week, Rome

Ida Aichinger

Model description		Future work

Outline

- Introduction
- Ø Model description

Mass-balance differential equation with boundary conditions

- Solution method Analytical approach
- ④ Results

Ida Aichinger

How good is the model matching in comparison to measured LHC data? What will change for the FCC?

Suture work

Introduction - Simulation program

- Aim: Fulfil FCC-hh vacuum requirement: Ultra high vacuum for FCC $\Leftrightarrow n < 2\cdot 10^{14} \frac{\rm particles}{m^3}$
- Simulation of residual gas particles in the beampipe
- Correlation between pressure and particle density via ideal gas equation: $P \cdot V = N \cdot k \cdot T$
- Molecular flow regime
- Multi-gas-model with four dominating gas species: *H*₂, *CH*₄, *CO*, *CO*₂
- Simulations are characterized by:
 - pipe geometry
 - beam induced effects
 - material outgassing
 - pumping mechanism

Model Description - Balance equation

The evolution of the particle density n is described with a diffusion equation:

$$V \frac{dn(x,t)}{dt} = c_{spec}(x,t) \cdot \frac{d^2 n(x,t)}{dx^2} + \underbrace{Q(x,t)}_{\text{Flow into system}} - \underbrace{S(x,t) \cdot n(x,t)}_{\text{Flow out of system}}$$

System of four coupled differential equations due to four gas species.

FCC week, Rome

Ida Aichinger

Flow into system (Q)

Particles that are added to the system:

Flow out of system (S)

Particles that are removed from the system:

wall distributed pumping

with:

- $\alpha \dots$ sticking probability
- A... lateral surface of beam pipe
- v... speed of particles

Local pumps are described in the boundary conditions.

Ida Aichinger

Simulation of Residual Gas Particles in an Ultrahigh Vacuum System

FCC week. Rome

Division of domain into finite elements

Split the domain into a finite number of segments and define for each segment a solution function n_k under steady state conditions. (with two arbitrary constants per segment)

Density and flux continuity between segments for each gas species:

$$n_{k-1}(x_k) = n_k(x_k)$$

$$-a_{k-1}n'_{k-1}(x_k) + a_k n'_k(x_k) = S_k n_k(x_k) - g_k$$

Ida Aichinger

FCC week, Rome

Boundary conditions

Flux of molecules must equal the amount of molecules pumped or generated by a local source. (Mirror conditions)

$$a_1 n'_1(x_1) = \frac{S_1}{2} n_1(x_1) - \frac{g_1}{2} -a_N n'_N(x_{N+1}) = \frac{S_{N+1}}{2} n_N(x_{N+1}) - \frac{g_{N+1}}{2}$$

FCC week, Rome

Ida Aichinger

System of 1st-order differential equation:

Change of variables: $y = \begin{pmatrix} n \\ n' \end{pmatrix} \in \mathbb{R}^8$, $M \in \mathbb{R}^{8 \times 8}, b \in \mathbb{R}^8$

$$\mathbf{y}'(\mathbf{x}) = M\mathbf{y}(\mathbf{x}) + b$$

Boundary conditions:

 $N \in \mathbb{N}, \quad k \in \{2, \dots, N\}, \quad H, S \in \mathbb{R}^{8 \times 8}, \quad F_1, F_N \in \mathbb{R}^{4 \times 8}, G \in \mathbb{R}^8, g \in \mathbb{R}^4$

$$H_{k-1}y_{k-1}(L) - (H_k + S_k)y_k(0) = G_k$$
(2)
$$F_1y_1(0) = -g_1$$
(3)

$$F_{N}\mathbf{y}_{N}(x_{N+1}) = g_{N+1}$$

Ida Aichinger

Simulation of Residual Gas Particles in an Ultrahigh Vacuum System

q

(4)

Theorem (Picard Lindelöf, Superposition principle)

Solution of equation system (1) with initial conditions y_0 is given by:

$$y(x) = P(x) \cdot \mathbf{y_0} + q(x)$$

with:

Fundamental system

Particular solution

$$P(x): \mathbb{R} \rightarrow \mathbb{R}^{8 imes 8}$$

 $x \mapsto exp^{M \cdot x}$

 $q(x): \mathbb{R} \rightarrow \mathbb{R}^8$ $x \mapsto -M^{-1} \cdot b$

< 17 ▶

The unknown y_0 in (5) are verified via the boundary conditions.

Simulation of Residual Gas Particles in an Ultrahigh Vacuum System

ECC week. Rome

(5)

Final system of equations

FCC week, Rome

Ida Aichinger

Global solution for particle density n(x)

Solving the equation system and evaluating y(x) in (5) with the unknowns y_0 gives us the particle density n(x) at position x.

For segment k:

$$n_k(x) = [y_k(x)]_{1:4}$$

The global solution is therefore given by:

$$n(x) = \begin{cases} n_1(x) & x_1 \le x \le x_2 \\ n_2(x) & x_2 < x \le x_3 \\ \vdots \\ n_N(x) & x_N < x \le x_{N+1} \end{cases}$$

Simulation of Residual Gas Particles in an Ultrahigh Vacuum System

ECC week. Rome

Model description	Solution method	Results	Future work

Results

- Algorithm is implemented in a Python environment
- \bullet Cross checked with $\mathit{MolFlow}+^1$ and LHC's data
- Delivers fast results, within one minute!
- Multi-gas model
- Is applicable to any vacuum system.

¹Monte-Carlo simulation program(R. Kersevan, M. Ady) ()

Ida Aichinger

Simulation of Residual Gas Particles in an Ultrahigh Vacuum System

ECC week. Rome

Q1 to Q4 - Quadrupoles in cryogenic region including a straight warm section

Ida Aichinger

FCC week, Rome

FCC forecast

Aim: 5 times better vacuum quality to guarantee a 100h beam lifetime (as it is now for LHC)

$$\rightarrow n \approx 2 \cdot 10^{14} \frac{\text{particles}}{\text{m}^3} (\text{in the arcs})$$

Change of parameters:

- aperture
- photon flux
- electron clouds
- different material

FCC week, Rome

Ida Aichinger

Future work

- Extension of the model
 - $\bullet~$ Using experimentally results and simulations in Molflow+ $\rightarrow~$ interpretate and implement it in analytical form
 - Dynamic effects, e.g. surface history
- Error and sensitivity analysis
- Graphical User Interface
- Evaluate different designs for FCC

FCC week, Rome

Ida Aichinger

Model description		Future work

Thank you for your attention!

... and thanks to the Vacuum Group at CERN, in particular to R. Kersevan, P. Chiggiato and J. Sopousek.

For questions and details: ida.aichinger@cern.ch

FCC week, Rome

Ida Aichinger