

# FCC Availability Studies

**Andrea Apollonio** on behalf of FCC RAMS Working Group FCC Week 2016, 14/04/2016

Acknowledgements: R. Alemany Fernandez, M. Benedikt, V. Begy, J. Gutleber, A. Niemi, E. Rogova, A. Romero Marin, J.-P. Penttinen, R. Schmidt, P. Sollander



4/13/2016

#### Motivation

- Technological and financial boundary conditions set a limit for the peak beam performance for accelerators at the forefront of science
- Important to address availability requirements from conceptual design and across the entire accelerator lifecycle





#### **Qualitative Definitions**

- Availability is a measure of the useful time of beam delivered to physics experiments
- Integrated luminosity [fb<sup>-1</sup>] is the key performance indicator for particle colliders





## **Availability and Costs**



- ☐ For a set target integrated luminosity, operation costs decrease with increasing availability
- ☐ The cost to achieve higher availability requires higher capital expenses



13/04/2016

5

## Scope of the Study

- Evaluate the suitability of industrial reliability methods for the domain of particle accelerators...
- ...taking the LHC as a case study
- Identify and analyse possible design and operational scenarios for a h-h Future Circular Collider
- Assess potential of methods for HL-LHC
- Identify **key impact factors** on availability and luminosity production
- This reliability & availability study DOES NOT intend to give specific guidelines for individual system design and optimization



### Collaboration Contributions



#### **CERN**

Coordination, modelling simulation, analytics, data management, use-case definition, technical infrastructure



#### **Ramentor Oy**

Modelling and simulation Software, training



Tech. Uni. Delft

Analytics, cryogenics system modelling



Tampere U. of Tech. Method and tool

consultancy



**Uni. Stuttgart:** 

Method and tool consultancy, training



Uni. Wien

Data analytics platform development



#### FCC-hh – A New Machine

- □ How should it be operated?
  - What would the FCC-hh cycle look like? (see talk by R. Alemany Fernandez on Wednesday)
  - What are the impacts of different injector designs/options?

- □ How should it be maintained?
  - What is the ideal number of scheduled shutdowns?
  - ☐ How can planned/condition-based/corrective maintenance contribute to availability improvements?



## Accelerator Schedule





13/04/2016

9

## LHC - Our Reference

#### ■ What do we know from the LHC? (25 ns Run in 2015)





## FCC-hh – A Complex Machine

□ 4 times bigger machine = 4 times less availability?

- Improved reliability for high-impact systems (redundancy)
  - Explore the potential of condition-based maintenance



- High availability of the injector chain
- Extremely efficient cycling

Sensitivity analyses of key contributors for luminosity production

- Optimization of machine protection settings
- Reduced fraction of premature dumps



### Breakdown of Failure Duration

#### **Failure Duration**







Restore



12

#### New strategies required!



#### Potential of Condition-Based Maintenance



## LHC Availability Model Elements

- □ Failures and consequences
  - Failure probability
  - Downtime (identification, diagnostics, logistics, repair/recovery)
- □ System/accelerator dependencies
  - Infrastructure supplies
  - Injector complex
- □ Failure dependencies
  - Operational modes (beam commissioning, user operation,...)
  - Beam parameters (intensity, energy)
  - Environmental effects
- □ Long term effects
  - Experience
  - Conditioning/deconditioning
  - Ageing/maintenance effects



## Model Implementation



Example: Failures in Injectors only relevant at Injection from the LHC perspective



# Example: Cryogenics Fault Tree

- **Model complexity** impractical to model the entire accelerator to a sufficient level of detail within the FCC study
- Start from top contributors to downtime



**BONUS**: the developed cryogenic fault tree will be used in 2016 for fault data capture by the cryo-operations team



## Model Validation: 2012 Luminosity Production



- □ 2012 LHC Luminosity production 23.27 fb<sup>-1</sup>
- Developed model allows predicting 2012 LHC luminosity production with better than 1 % accuracy
- ☐ Results from 1000 model iterations (~10 min)



# **Enabling Technologies for Modelling**

- Data availability and data quality difficult to derive useful reliability figures without a dedicated effort
  - Consistent monitoring of signal trends necessary for condition-based maintenance
- ☐ FCC RAMS database (collaboration started with IT Department @CERN)





18

#### Conclusions & Outlook

- Estimates of the **achievable availability** of the FCC-hh will be one of the main factors for the assessment of its **feasibility**
- LHC Availability model implemented (better than 1 % acc.), ready for extrapolation to FCC
- Future studies should focus on:
  - □ Definition of a FCC cycle duration (also influencing system design)
  - ☐ Analysis of different **injector options** (also influencing cycle duration)
  - □ Identify strategy for **scaling** number of components (e.g. number of power converters, redundancy in cryogenic system,...)
  - Data quality management (RAMS Database)
- Possibility: extend the study to the FCC-ee?
  - □ Requires expertise (and data) on lepton machines



## Thanks a lot for your attention!



Join us in the FCC RAMS study! FCC-RAMS@cern.ch

4/13/2016