Simulations for FCC-ee beam self-polarization

E. Gianfelice (Fermilab)

Contents:
- Introduction
- Sokolov-Ternov polarization in a 100 km ring
- Polarization in presence of wigglers; parametric studies
- Simulations at 45 and 80 GeV in presence of misalignments
- Some considerations on energy calibration
- Summary

FCC Week, Rome, April 2016
Introduction

- High precision beam energy measurement ($\ll 100$ keV) is needed for Z pole physics at 90 GeV CM energy and W physics at 160 CM energy.
- If not at cost of luminosity, longitudinal beam polarization improves Z peak measurements, but it is not essential.
- Self-polarization through Sokolov-Ternov effect strongly depends on bending radius and beam energy: not obvious for FCC.
Sokolov-Ternov polarization

Beam get vertically polarized in the ring guiding field

\[P_\infty = 92.3\% \]

\[\tau_p^{-1} = \frac{5\sqrt{3}}{8} \frac{r_e \gamma^5 \hbar}{m_0 C} \oint |\rho|^3 ds \]

For FCC-\(e^+e^-\) with \(\rho \simeq 10424\) m, fixed by the maximum attainable dipole field for the \(hh\) case, it is

<table>
<thead>
<tr>
<th>(E) (GeV)</th>
<th>(U_0) (MeV)</th>
<th>(\sigma_E/E) (%)</th>
<th>(\tau_{pol}) (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>35</td>
<td>0.038</td>
<td>256</td>
</tr>
<tr>
<td>80</td>
<td>349</td>
<td>0.067</td>
<td>14</td>
</tr>
</tbody>
</table>
Effect of wigglers

\(\tau_p \) may be reduced by introducing wigglers:

\[
\tau_p^{-1} = F \gamma^5 \left[\int_{\text{dip}} \frac{ds}{|\rho_d|^3} + \int_{\text{wig}} \frac{ds}{|\rho_w|^3} \right]
\]

\(F \equiv \frac{5\sqrt{3}}{8} \frac{r_e \hbar}{m_0 C} \)

Polarization

\[
P_\infty = \frac{8}{5\sqrt{3}} \frac{\oint \! ds \frac{\hat{B} \cdot \hat{n}_0}{|\rho|^3}}{\oint \! ds \frac{1}{|\rho|^3}} \propto \tau_p \left[\int_{\text{dip}} \! ds \frac{\hat{B}_d \cdot \hat{n}_0}{|\rho_d|^3} + \int_{\text{wig}} \! ds \frac{\hat{B}_w \cdot \hat{n}_0}{|\rho_w|^3} \right]
\]

\(\hat{n}_0 \equiv \hat{y} \) in a perfectly planar ring.

Constraints:

- \(x' = 0 \) outside the wiggler \(\Rightarrow \int_{\text{wig}} \! ds \, B_w = 0 \) (vanishing field integral)
- \(x = 0 \) outside the wiggler \(\Rightarrow \int_{\text{wig}} \! ds \, sB_w = 0 \) (true for symmetric field)
- \(P \) large \(\Rightarrow \int_{\text{wig}} \! ds \, B_w^3 \) must be large
The LEP polarization wigglers have been considered

\[
\int_{wig} ds \frac{1}{\rho_w^3} = \frac{L_+}{\rho_+^3} \left(1 - \frac{1}{N^2} \right)
\]

\[N \equiv \frac{L_-}{L_+} = \frac{B_+}{B_-}\]

\(N\) should be large for keeping polarization high!
4 such wigglers with $N = 6$ and $L_+ = 1.3$ m have been introduced in dispersion free regions of a simplified FCC ring ("toy ring"). At 45 GeV:

<table>
<thead>
<tr>
<th>B_+ (T)</th>
<th>U_0 (MeV)</th>
<th>$\Delta E/E$ (%)</th>
<th>ΔE (MeV)</th>
<th>ε_x (µm)</th>
<th>τ_x (s)</th>
<th>P (%)</th>
<th>τ_{pol} (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>37</td>
<td>.04</td>
<td>18</td>
<td>.8e-3</td>
<td>.82</td>
<td>92.4</td>
<td>14e3</td>
</tr>
<tr>
<td>1.3</td>
<td>64</td>
<td>.22</td>
<td>99</td>
<td>.5e-2</td>
<td>.48</td>
<td>87.6</td>
<td>247</td>
</tr>
<tr>
<td>2.6</td>
<td>144</td>
<td>.41</td>
<td>184</td>
<td>.070</td>
<td>.21</td>
<td>87.6</td>
<td>31</td>
</tr>
<tr>
<td>3.9</td>
<td>278</td>
<td>.55</td>
<td>247</td>
<td>.274</td>
<td>.11</td>
<td>87.6</td>
<td>9</td>
</tr>
<tr>
<td>5.2</td>
<td>466</td>
<td>.65</td>
<td>292</td>
<td>.691</td>
<td>.06</td>
<td>87.6</td>
<td>4</td>
</tr>
</tbody>
</table>
LEP measured polarization

(R. Assmann et al., SPIN2000, Osaka)

Polarization strongly depending on energy and no polarization observed above 65 GeV!
Sokolov-Ternov effect
in the guiding dipole field

Polarisation

Equilibrium polarisation

(< \(P_{ST} \))

Perturbations
(v-bends, vertical orbit in quads etc.)

Depolarisation
Derbenev-Kondratenko expression for equilibrium polarization

\[P_{DK} = \frac{8}{5\sqrt{3}} \oint ds < \frac{1}{|\rho|^3} \hat{b} \cdot (\hat{n} - \frac{\partial \hat{n}}{\partial \delta}) > \]

with

\[\hat{b} \equiv \vec{v} \times \dot{\vec{v}} / |\vec{v} \times \dot{\vec{v}}| \]

\(\partial \hat{n} / \partial \delta \) (\(\delta \equiv \delta E / E \)) quantifies the depolarizing effects resulting from the trajectory perturbations consequent to photon emission.

Perfectly planar machine: \(\partial \hat{n} / \partial \delta = 0 \).

In presence of radial fields: \(\partial \hat{n} / \partial \delta \neq 0 \) and large when

\[\nu_{spin} \pm mQ_x \pm nQ_y \pm pQ_z = \text{integer} \quad \nu_{spin} \simeq a \gamma \]

Usually the dominant higher order resonances are the \textit{synchrotron sidebands} of the first order resonances.

LEP lack of polarization at high energy is understood as due to the \textit{larger} beam energy spread. Wigglers increase the energy spread of FCC-e+e- beams!
Is it possible to improve the wiggler design to get lower energy spread at constant τ_{pol}?

The important interconnected parameters are

$$U_{loss} = \frac{C\gamma E^4}{2\pi} \oint \frac{ds}{\rho^2}$$

$$\frac{(\sigma_E/E)^2}{\gamma^2} = \frac{C_q}{J_\epsilon} \oint \frac{ds}{|\rho|^3} / \oint \frac{ds}{\rho^2}$$

$$\tau_p^{-1} = F\gamma^5 \left[\int_{dip} \frac{ds}{|\rho_d|^3} + \int_{wig} \frac{ds}{|\rho_w|^3} \right] = F\gamma^5 \left[\int_{dip} \frac{ds}{|\rho_d|^3} + \frac{L^+}{|\rho^+|^3} (1 + \frac{1}{N^2}) \right]$$

$$P_\infty = \frac{8F\gamma^5}{5\sqrt{3}} \tau_p \left[\int_{dip} ds \frac{\hat{B}_d \cdot \hat{n}_0}{|\rho_d|^3} + \frac{L^+}{|\rho^+|^3} (1 - \frac{1}{N^2}) \right]$$

$\hat{n}_0 \equiv \hat{y}$ in a planar ring
For energy calibration the actual important parameter is the time, $\tau_{10\%}$, needed to reach $P \simeq 10\%$ rather than τ_p

\[\tau_{10\%} = -\tau_p \times \ln(1 - 0.1/P_\infty) \quad \text{depends upon } P_\infty \]

The energy spread may be written as

\[(\sigma_E/E)^2 = \frac{C_q C_\gamma E^4}{2\pi J_\epsilon F \gamma^3 \tau_p U_{loss}} \]

i.e. small σ_E and τ_p are at the price of higher U_{loss}.

Parametric studies done for finding the best configuration, but no “miraculous” setting found.

I’ll stick here to the 4 wigglers configuration.
Resonances are awakened by imperfections!

Question: how *perfect* the ring must be for keeping resonances “sleeping”?

Simulations in presence of realistic errors and corrections are needed.

- **MAD-X** used for simulating quadrupole misalignments and orbit correction
- **SITROS** (by J. Kewish) used for computing the resulting polarization. It is a tracking code with 2th order orbit description and non-linear spin motion. It has been used for HERA-e in the version improved by M. Böge and M. Berglund.
 - HERA-e like *Harmonic Bumps* optimization for $\delta \hat{n}_0$ correction in the FCC-e+e- ring implemented.

SLIM by A. Chao is used for linear calculations.

SLICKTRACK by D. Barber is available too, but it needs extra work to avoid using the costly NAG library.
Washington week:

- 45 GeV case with 4 wiggles
 - effect of quadrupole vertical mis-alignment for various wiggler field strength was considered
 - in absence of BPMs errors polarization was not a mission impossible

In this talk:

- 45 GeV
 - limit $\Delta E = 50$ MeV (extrapolating from LEP)
 - 4 wiggles with $B^+ = 0.7$ T
 - 10% polarization in 2.9 h for energy calibration

- 80 GeV
 - no wigglers
 - 10% polarization in 1.6 h for energy calibration

- BPMs errors added to quadrupole misalignments
Simulations at 45 GeV

“Toy” ring, 4 wigglers with $B_+ = 0.7$ T

- $Q_x = 0.1278$
- $Q_y = 0.2085$
- $Q_s = 0.1174$ ($U_{rf} = 900$ MV, $f_{RF} = 400$ MHz)

Closed orbit correction scheme:

- BPM introduced close to each quadrupole
- one vertical corrector introduced close to each vertical focusing quadrupole
- orbit corrected either by
 - SVD using all 1096 correctors
 or
 - 110 correctors (MICADO algorithm)
- polarization axis $\hat{n}_0(s)$ distortion corrected by 8 “Harmonic Bumps” à la HERA-e
Quadrupole vertical misalignments

- $\delta_y^Q = 200 \, \mu m$

<table>
<thead>
<tr>
<th>y_{rms}</th>
<th>$\delta \hat{n}_{0,rms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(mrad)</td>
</tr>
<tr>
<td>8</td>
<td>26.4</td>
</tr>
<tr>
<td>SVD</td>
<td>0.05 0.3</td>
</tr>
</tbody>
</table>

4 Wigglers $B_+=0.7 \, T \cdot Q_s=0.1$

- Linear
- SITROS
- $\delta_Q^y = 200 \, \mu m$
- BPMs errors
 - $\delta_y^M = 200 \, \mu m$
 - 10% calibration errors

<table>
<thead>
<tr>
<th>y_{rms}</th>
<th>$\delta n_{0,rms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(mrad)</td>
</tr>
<tr>
<td>SVD</td>
<td>0.8</td>
</tr>
<tr>
<td>+Harmonic bumps</td>
<td>0.9</td>
</tr>
</tbody>
</table>

4 Wig. B$^+$=0.7T

Polarization [%]

SVD

SVD + harmonic bumps
Increasing wiggler strength and keeping errors/correctors (orbit and $\delta \hat{n}_0$ are unchanged), ie

- 4 wiggler with $B^+ = 3.9$ T
 ($\Delta E = 247$ MeV at 45 GeV !)
- $\delta Q_y = 200$ μm
- BPMs errors
 - $\delta M_y = 200$ μm
 - 10% calibration errors
- SVD correction + hb
<table>
<thead>
<tr>
<th>y_{rms}</th>
<th>$\delta \hat{n}_{0,rms}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(mrad)</td>
</tr>
<tr>
<td>8.</td>
<td>26.4</td>
</tr>
<tr>
<td>MICADO</td>
<td>0.6</td>
</tr>
<tr>
<td>+ bumps</td>
<td>0.7</td>
</tr>
</tbody>
</table>

4 Wig. B$^+$=0.7T

MICADO

4 Wig. B$^+$=0.7T

MICADO + harmonic bumps
Simulations at 80 GeV

- no wigglers
- $\delta_Q^y = 200 \, \mu\text{m}$
- no BPMs errors
- orbit correction by SVD
 - $y_{rms} = 0.05 \, \text{mm}$
 - $\epsilon_y/\epsilon_x \approx 0$
 - $\delta \hat{n}_{0,rms} = 3 \, \text{mrad at 79.98 GeV}$
Increasing Q_s to 0.3\(^a\)

Correcting $\delta n_{0,\text{rms}} = 2.5$ mrad

\[\xi = \left(\frac{\alpha \gamma \Delta E}{Q_s E} \right)^2 \]

\(^a\)Enhancement factor
Adding BPMs errors

- no wigglers
- $\delta^Q_y = 200 \ \mu m$
- BPMs errors
 - $\delta^M_y = 200 \ \mu m$
 - 10% calibration errors
- orbit correction by SVD
 - $y_{rms}=0.8 \ \text{mm}$
 - $\epsilon_y/\epsilon_x=0.2\%$
 - $\delta\hat{n}_{0,rms}=19.8 \ \text{mrad at } 79.98 \ \text{GeV}$
- with harmonic bumps
 - $\delta\hat{n}_{0,rms}=8.6 \ \text{mrad}$
 - $\epsilon_y/\epsilon_x=2\%$
The large vertical bumps increase the vertical emittance!
Idea: use 5 coils to get dispersion-free bumps.

- no wigglers
- $\delta_y^Q = 200 \ \mu m$
- BPMs errors
 - $\delta^M_y = 200 \ \mu m$
 - 10% calibration errors
- orbit correction by SVD
 - $y_{rms} = 0.8 \ mm$
 - $\epsilon_y/\epsilon_x = 0.2\%$
 - $\delta n_{0,rms} = 19.9 \ mrad$ at 79.98 GeV
- with harmonic bumps
 - $\delta n_{0,rms} = 9.7 \ mrad$
 - $\epsilon_y/\epsilon_x = 0.2\%$
Some considerations on energy calibration through resonant depolarization

It is based on the relationships

\[\nu_{\text{spin}} = a\gamma \]

\[a \equiv \text{gyromagnetic anomaly} \]

Required precision: better than 100 KeV.

To be taken into account

- beam energy dependence upon
 - orbit length → “continuous” monitoring
 - position along the ring
- short luminosity lifetime (1-3 hours) calls for top-up injection → use of non-colliding bunches for polarization
 - non-colliding bunches may have a different energy

One more basic problem

- is it always \(\nu_{\text{spin}} = a\gamma \) ?
The relationships $\nu_{spin} = a\gamma$ holds for a purely planar ring

- Effect of radial fields depends upon energy and unperturbed spin tune. For the toy ring, averaging over 10 seedsa

\[
\begin{array}{|c|c|}
\hline
\Delta E & (\text{KeV}) \\
45 \text{ GeV} & 6.3 \pm 3.0 \\
80 \text{ GeV} & 20.0 \pm 9.4 \\
\hline
\end{array}
\]

- Effect of RF electric field (term $\vec{\beta} \times \vec{E}_{RF}$ in BMT-equation)b

\[
\begin{array}{|c|c|}
\hline
\Delta E & (\text{KeV}) \\
45 \text{ GeV} & \alpha_{rms} \times 43 \\
80 \text{ GeV} & \alpha_{rms} \times 76 \\
\hline
\end{array}
\]

$\alpha \equiv$ angle between orbit and electric field (mrad).

aUsing formulas from R. Assmann thesis

bFrom Yu. I. Eidelman et al. formulas
The spin tune changes as computed by SITF (linear) for the actual cases presented here (with BPMs errors) give

<table>
<thead>
<tr>
<th>ΔE (KeV)</th>
<th>svd</th>
<th>+hb</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 GeV</td>
<td>36</td>
<td>52</td>
</tr>
<tr>
<td>80 GeV</td>
<td>162</td>
<td>135</td>
</tr>
</tbody>
</table>

The effect seems to be larger than expected; it should be better investigated!
Summary and outlook.

Studies for the 45 GeV and 80 GeV case have been presented.

- The large bending radius requires wigglers for reducing the polarization time at low energy keeping a high asymptotic polarization level in absence of errors.

- In presence of errors, in particular the vertical misalignment of quadrupoles, depolarizing resonances appear. Synchrotron side-bands become more dangerous with increasing energy spread. Their importance can be quantified only by non-linear calculations, like in SITROS.

- Maintaining acceptable level of polarization calls for well planned correction schemes, in particular at 80 GeV.

- With the proposed scheme it seems that maintaining polarization for energy calibration at 45 GeV is not a mission impossible, but space must be provided in the FODO cells!
• At larger energy ϵ_x increases
 – larger effect of coupling and $\delta \hat{n}_0$

• At 80 GeV, $\delta \hat{n}_0$ due to the same misalignments increases and although the energy spread is the same as at 45 GeV with wigglers, the polarization is lower!

• The large bumps required for the correction cause an even larger vertical emittance increase.
 – A more efficient $\delta \hat{n}_0$ correction has been considered, likely there is still space for improvements.
 – The reach of beam-based alignments techniques should be investigated.

• Effect of solenoids ($\delta \hat{n}_0$ and coupling) must be compensated, better with anti-solenoids at proper locations. The planned solution is highly recommended!
End of the 3th Episode

Thanks!