Interaction Region optics solutions

A.Bogomyagkov, E. Levichev, K. Oide, P.Piminov, D. Shatilov, S. Sinyatkin

Many thanks to M. Benedikt, H. Burkhardt, B. Haerer, B. Holzer, M. Koratzinos, P. Vobly, F. Zimmermann

Luminosity vs beam energy (theoretical estimations)

	Ζ	W	н	tt
Energy [GeV]	45	80	120	175
Perimeter [km]	100			
Emittance hor. [nm]	0.14	0.44	1	2.1
Emittance ver. [pm]	1	2	2	4.3
eta_x^*/eta_y^*	0.5/0.001			
Crossing angle [mrad]	30			
Luminosity / IP $[10^{34} cm^{-2} s^{-1}]$	212	36	9	1.3
Crossing angle [mrad]	26			
Luminosity / IP $[10^{34} cm^{-2} s^{-1}]$	255	43	10	1.4

Requirements

- 1. Must fit hadron collider tunnel. Perimeter 100 km.
- 2. Two interaction points (defined by FCC-hh and price).
- 3. $\beta_x^* / \beta_y^* = 0.5m / 0.001m (1m / 0.002m).$
- 4. Vertical emittance is less or equal than 1 pm at 45 GeV.
- 5. Horizontal emittance is 1-2 nm at 175 GeV.
- 6. Energy acceptance $\pm 2\%$.
- 7. $E_{\gamma,c} < 100$ keV within ±250 m from IP (Helmut Burkhardt).

Solutions

- 1. Strong requirement of $E_{\gamma,c} < 100$ keV within ±250 m from IP and FFC-hh tunnel dictates asymmetric solutions. There are two variants by K. Oide and A. Bogomyagkov.
- 2. Another solution is to have head-on for 175 GeV by S. Sinyatkin and crab waist for lower energies (rejected).
- 3. Geometry constraints hint about crossing angle optimization (30 mrad or 26 mrad).
- 4. Small vertical emittance at 45 GeV demands local solenoid compensation.
- 5. Local chromaticity correction sections (CCS) to provide energy acceptance.

The reason for chromaticity sections Tuned momentum acceptance LEP like IR 503.5 $\sigma_{\delta} = 0.15\%$ Q'_v = 15: 503.4 [-0.21%, 0.07%] 503.3 335.6 half-integer ð ð 503.2 335.4 [-0.15%, 0.07%] 503.1 335.2 503 335 -0.0040 0.002 0.004 -0.002dp/p **FCC-ee Optics Meeting** Status of the chromaticity correction in the arcs 10 02 October 2015 Bastian Haerer (bastian.harer@cern.ch)

IR1: asymmetric by KO, 30 mrad

Dynamic aperture: AB, 26 mrad

50 Turns without damping, CRAB is OFF, RF is ON. $\varepsilon_x = 1.4 \text{ nm}, v_s = 0.0807, U_{RF} = 11 \text{ GV}, \tau_x = 44 \text{ turns}$

Synchrotron radiation towards IP

Dipole	L, m	S(end), m	Ec, keV	
IR1: asymmetric by KO, 30 mrad (v.58-32)				
BWL.2	37	76.5	100	
BC1L.2	105.7	186	100	
IR2: asymmetric by AB, 26 mrad (v.9-5)				
B0	59	67.5	100.8	
B1	59	127	100.8	
B2	59	195.2	201.5	
B3	30	226.4	310.5	
B4	45	287.2	494	

Layout: KO 30 mrad and AB 26 mrad

Layout: AB 30 mrad and AB 26 mrad

IP trajectories 1

Solenoid compensation for IP1

Compensating solenoid R = 0.1 m, screening solenoid R = 0.2 m.

Emittance vs Lcomp: E=45 GeV, IP1

IP trajectories 2

13.04.2016

bare

m

1.8

2

I/m

151

73

[cm]

4.2

G

Solenoid compensation for IP2

Emittance vs Lcomp: E=45 GeV, IP2

Head-on at 175 GeV (rejected)

Because there is no significant gain in luminosity from crossing angle and crab waist at 175 GeV.

The benefits are:

- 1. single aperture of final focus elements, magnets are simple,
- 2. no crab sextupole, therefore IR is shorter,
- 3. easy to satisfy $E_{\gamma,c} < 100$ keV within ±250 m from IP,
- 4. no limitation of dynamic aperture from crab sextupole.

The disadvantage:

1. Rearrange the whole IR.

IR3: head on

X, m

Comparison

КО	AB
Vertical chromaticity correction section is combined with crab sextupole, no horizontal chromaticity correction section.	Separate vertical, horizontal, crab sextupole sections.
Chromaticity is corrected by 300 independent pairs of arc sextupoles.	Chromaticity is corrected by 8 sextupole families in the IR and 8 families in the arcs.
Wider and longer tunnel in the IR, but flexible with the entrance angle to the arc tunnel.	Narrower and shorter tunnel of the IR, but stiff entering the arc tunnel.
$E_{\gamma,c} < 100$ keV within 250 from IP.	$E_{\gamma,c} < 100$ keV within 130 m, $E_{\gamma,c} < 200$ keV within 200 m, $E_{\gamma,c} < 300$ keV within 225 m.

QD0 prototype 100 T/m

New version of QD0 was developed at BINP recently and a single-aperture prototype was manufactured.

Main parameters: Max.gradient 100 T/m Max.current 1100 A Length 40 cm Aperture 2 cm NbTi 1.8 x 1.4 mm² Saddle-type coils

During the first cryo-test (01.02.16) the current of 1060 A was achieved after 3 quenches.

QD0 design 200 T/m

Pros	Cons	Main parameters
Larger aperture to avoidhigher order HOMSSR hitting the walls	Higher SR	 Maximum gradient 217 T/m. Length 180 cm.
More room for luminometer		• Radius 2 cm.

	An	Bn	an	bn	
1	0.0000000	0.0000000	0.0000000	0.0000000	
2	21.7186393	0.0000000	21.7186393	0.0000000	
3	0.0000000	0.0000000	0.0000000	0.0000000	
4	0.0024942	0.0000000	0.0149654	0.0000000	
5	0.0000000	0.0000000	0.0000000	0.0000000	
6	0.0029498	0.0000000	0.3539802	0.0000000	
7	0.0000000	0.0000000	0.0000000	0.0000000	
8	0.0000048	0.0000000	0.0239750	0.0000000	
9	0.0000000	0.0000000	0.0000000	0.0000000	
10	-0.0001845	0.0000000	-66.9473869	0.0000000	
11	0.0000000	0.0000000	0.0000000	0.0000000	
12	0.0000459	0.0000000	1830.9513791	0.0000000	
13	0.0000000	0.0000000	0.0000000	0.0000000	
14	-0.0000359	0.0000000	23745.701294	0.0000000	
15	0.0000000	0.0000000	0.0000000	0.0000000	
16	0.0000265	0.0000000	592924.54556	0.0000000	
17	0.0000000	0.0000000	0.0000000	0.0000000	
18	-0.0000253	0.0000000	4644816.4750	0.0000000	

IR solutions

Conclusion

- I. There are two asymmetric IR:
 - 1. KO with 30 mrad and $E_{\gamma,c} < 100$ keV within ± 250 m but wide tunnel or two tunnels,
 - 2. AB with 26 mrad and smaller tunnel but with $E_{\gamma,c} < 100$ keV within ±130 m, $E_{\gamma,c} < 200$ keV within ±200 m, $E_{\gamma,c} < 300$ keV within ±225 m.
- II. Head-on option for 175 GeV, but with complete IR rearrangement.
- III. The 200 T/m quadrupole is possible therefore we could implement it in the optics, giving more room for luminosity monitor.