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Physics	behind	precision	
q  EWPO	measurements	allow	a	prediction	of	mtop,	mW,	mH,	sin2θW	in	the	SM	

◆  Compare	with	FCC-ee	direct	measurements	
●  The	standard	model	has	nowhere	to	go	

●  Sensitivity	to	new	physics	?		
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Without	mZ@FCC-ee,		the	SM	line		
would	have	a	2.2	MeV	width	
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If	theory	uncertainties	match	exp’tal	uncertainties	
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Impact	of	αQED(mZ
2)	precision	

q  Uncertainty	on	these	predictions	are	of	two	origins	
◆  Parametric	
◆  Higher	orders	

q  For	mW	and	sin2θW		today	(see	Sven	Heinemeyer’s	talk	on	Tuesday)	
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Exp:	0.015	
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Impact	of	αQED(mZ
2)	precision	

q  Uncertainty	on	these	predictions	are	of	two	origins	
◆  Parametric	
◆  Higher	orders	(QCD,	EW,	mixed)	

q  Reduced	uncertainties	at	the	FCC-ee	

q  Must	reduce	current	exp’tal	uncertainty	on	αQED(mZ
2)	by	a	factor	~4-5	

◆  New	generation	of	theoretical	calculations	is	necessary	to	gain	a	factor	10	in	precision	
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q  The	e+e-→	µ+µ-	cross	section	

	
◆  Photon	exchange	(G)	proportional	to	α2(s)	
◆  Z	exchange	(Z)	proportional	to	GF

2	
◆  Interference	term	proportional	to	α(s)	GF	

●  Need	to	choose	√s	judiciously	to	maximize	sensitivity	to	α(s)	
●  If	√s	is	close	to	mZ,	the	√s	→	mZ	extrapolation	uncertainty	is	negligible	
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determination of the vacuum polarization �↵
(5)
had. Here, the point is not to extrapolate

↵QED(m
2
Z) from ↵QED(0), but to provide a direct evaluation of ↵QED at

p
s ' mZ, hence

with totally different theoretical and experimental uncertainties. This measurement would
in turn be combined with other determinations for an even smaller uncertainty.

This letter is organized as follows. In Section 2, the reasons for the choice of Aµµ
FB as

an observable sensitive to ↵QED are given, and the sensitivity is determined as a function
of the centre-of-mass energy. The optimal centre-of-mass energies, as well as the integrated
luminosities and running time needed to achieve a statistical uncertainty of a few 10

�5 are
determined in Section 3. Possible systematic uncertainties are discussed and evaluated in
Section 4.

2 The muon forward-backward asymmetry and the electromagnetic cou-

pling constant

At the FCC-ee, the muon pair production proceeds via the graph depicted in Fig. 1 through
either a Z or a � exchange.

-e
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, Zγ
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Figure 1. Tree-level Feynmann graph for µ+µ� production at the FCC-ee

At tree level, the cross section �µµ therefore contains three terms: (i) the �-exchange
term squared, proportional to ↵2

QED(s); (ii) the Z-exchange term squared, proportional to
G2

F (where GF is the Fermi constant); and (iii) the �-Z interference term, proportional
to ↵QED(s) ⇥ GF. These three terms are denoted G, Z, and I in the following. Their
expressions as a function of the centre-of-mass energy

p
s can be found in Ref. [10] and

reported below.

G =

c2�
s
, (2.1)

Z =

c2Z(v
2
+ a2)2 ⇥ s

(s�m2
Z)

2
+m2

Z�
2
Z

, (2.2)

I =

2c�cZv2 ⇥ (s�m2
Z)

(s�m2
Z)

2
+m2

Z�
2
Z

, (2.3)
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with the following definitions:

c� =

r
4⇡

3

↵QED(s), cZ =

r
4⇡

3

m2
Z

2⇡

GFp
2

, a = �1

2

, v = a ⇥ (1� 4 sin

2 ✓W), (2.4)

and where ✓W is the effective Weinberg angle (sin2 ✓W ' 0.2315).
An absolute measurement of the µ+µ� production cross section �µµ = Z + I + G is

therefore a priori sensitive to ↵QED through the interference term and the �-exchange term.
The cross section and the three contributing terms are displayed in Fig. 2 as a function of the
centre-of-mass energy

p
s, with the inclusion of initial state radiation (ISR). In this figure,

the effective collision energy after ISR, denoted
p
s0, is required to satisfy s0 > 0.99s. The

importance of such a requirement on s0, together with the way to control it experimentally,
is discussed in Section 4.3.2.

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates

to a variation ��µµ of the cross section :

��µµ =

�↵

↵
(I + 2G). (2.5)

As is well visible in Fig. 2, the interference term can be neglected in the above equation.
As a consequence, if the cross section can be measured with a precision ��µµ, the relative
precision on the electromagnetic coupling constant amounts to

�↵

↵
' ��µµ

2G ' 1

2

��µµ
�µµ

✓
1 +

Z
G
◆
. (2.6)

The target statistical precision of 2 ⇥ 10

�5 on ↵QED can therefore be achieved with
more than 10

9 µ+µ� events and at centre-of-mass energy where the Z contribution to the
cross section is much smaller than the photon contribution. These two conditions call for
a centre-of-mass energy smaller than 70 GeV, where the cross section is both large and
dominated by the photon contribution. Beside the fact that this centre-of-mass energy is
not in the current core programme of the FCC-ee and that the needed integrated luminosity
of 50 ab�1 would require at least a year of running at this energy in the most favourable
conditions, the measurement itself poses a number of intrinsic difficulties. Indeed, the
absolute measurement of a cross section with a precision of a few 10

�5 requires the selection
efficiency, the detector acceptance, and the integrated luminosity to be known with this
precision or better. Even if not impossible to meet, these requirements are exceedingly
challenging in the extraction of ↵QED from this method with the needed precision.

The muon forward-backward asymmetry, Aµµ
FB, defined as

Aµµ
FB =

�F
µµ � �B

µµ

�F
µµ + �B

µµ
, (2.7)

where �
F(B)
µµ is the µ+µ� cross section for events with the µ� direction in the forward

(backward) hemisphere with respect to the e

�-beam direction, hence with �F
µµ+�B

µµ = �µµ,
solves most of these obstacles. Indeed, it is a self-normalized quantity, which thus does not

– 4 –

(∼ -0.037)	

Sensitivity	of	e+e-	→	µ+µ-	to	αQED(mZ
2)		
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q  The	e+e-→	µ+µ-	cross	section	

11-15 April 2016 
FCC Week 2016 (Rome) 

6 



Patrick Janot 

 (GeV)      s
50 60 70 80 90 100 110 120 130 140 150

µ
µ F

B
A

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sensitivity	of	e+e-	→	µ+µ-	to	αQED(mZ
2)		

q  The	e+e-→	µ+µ-	angular	distribution	
◆  Absolute	cross	section	measurement	might	be	challenging	to	the	required	precision	

●  Uncertainty	of	the	integrated	luminosity	determination	
◆  Rely	of	a	self-normalizing	quantity,	the	forward-backward	asymmetry		
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Figure 2. Cross section for the e

+
e

� ! µ+µ� process (red curve) and the three contributions,
calculated from the analytical expressions of Ref.[10]: pure �-exchange term (blue curve); pure
Z-exchange term (green curve); and the absolute value of the �-Z interference term (black curve).
The initial-state radiation is included, and s0/s is required to exceed 0.99.

need the measurement of the integrated luminosity. Moreover, most uncertainties on the
selection efficiency and the detector acceptance simply cancel in the ratio. This observable
is therefore a good candidate for a measurement with an exquisite precision.

At lowest order, and if the terms proportional to m2
µ/m

2
Z ⇠ 10

�6 are neglected, the
angular distribution of the µ� from the e

+
e

� ! µ+µ� production can be written in the
following way [11]:

d�µµ
d cos ✓

(s) / G1(s)⇥ (1 + cos

2 ✓) +G3(s)⇥ 2 cos ✓, (2.8)

where G1(s) and G3(s) can be expressed as a function of G, Z and I as follows:

G1(s) = G + I + Z and G3(s) =
a2

v2

⇢
I +

4v4/a4

(1 + v2/a2)2
Z
�
. (2.9)

After integration over the muon polar angle ✓, the forward-backward asymmetry therefore
amounts to:

Aµµ
FB(s) =

3

4

G3(s)

G1(s)
. (2.10)
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The variation of Aµµ
FB as a function of the centre-of-mass energy, as obtained from

Eq. 2.10, is shown in Fig. 3. In the above expressions, the photon-exchange term is totally
symmetric, hence is absent from the numerator. Because v4/a4 ' 3⇥10

�5, the Z-exchange
term contribution to the asymmetry is minute, except at the Z pole where the interference
term vanishes and the asymmetry is small: Aµµ

FB,0 = (3/4) ⇥ 4v2a2/(a2 + v2)2 ' 0.016.
The interference term, on the other hand, is almost 100% anti-symmetric and contributes
mostly to the numerator. (The contribution of the interference term to the denominator,
i.e., to the total cross section, can be neglected as shown in Fig. 2.)
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Figure 3. The muon forward-backward asymmetry in e

+
e

� ! µ+µ� as a function of the centre-
of-mass energy.

The off-peak muon forward-backward asymmetry can therefore be expressed as follows:

Aµµ
FB = Aµµ

FB,0 +
3

4

a2

v2

I
G + Z . (2.11)

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates to

a variation �Aµµ
FB of the muon forward-backward asymmetry:

�Aµµ
FB =

�↵

↵
⇥ 3

4

a2

v2

I(Z � G)
(G + Z)

2
=

⇣
Aµµ

FB �Aµµ
FB,0

⌘
⇥ Z � G

Z + G ⇥ �↵

↵
. (2.12)

In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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q  Variation	of	AFB	with	αQED		

◆  																																																																		dZ/dα = 0									dI/dα = I/α								dG/dα = 2G/α	

◆  For	a	small	variation	Δα 	

q  Statistical	uncertainty	on	AFB	
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where � is proportional to the well-known QED �-function. In the standard model and at
the lowest QED/QCD order, it reads �0 =

P
f Q

2
f /3⇡, where the sum runs over all active

fermions at the Z pole (f = e, µ, ⌧ , d, u, s, c b) and Qf is the fermion electric charge in
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unit of e. The standard model extrapolation correction from ↵± to ↵0 therefore amounts to
�0.033 from the measurement below the Z pole, and +0.030 from the measurement above
the Z pole, corresponding to a relative correction of ±2.5⇥10

�4 in both cases, i.e., an order
of magnitude larger than the targeted uncertainty on ↵0. While this correction is known
with an excellent precision in the standard model – the QED �-function is now known with
QED corrections up to five loops and QCD corrections up to four loops [13, 14] –, it is
certainly preferable to remove this model dependence (and the residual theory uncertainty)
from the determination of ↵0.

The dual measurements of ↵� and of ↵+ solve this issue and yields the straightforward
combination:

1

↵0
=

1

2

✓
1� ⇠

↵�
+

1 + ⇠

↵+

◆
, where ⇠ =

log s�s+/m
4
Z

log s�/s+
' 0.045, (3.3)

without any model dependence related to the running of the electromagnetic constant. This
combination of a measurement below the Z peak and a measurement above the Z peak has
other advantages, the most important of which is the cancellation to a large extent of many
systematic uncertainties, as explained in the next section. With this weighted average, the
targeted precision of 2 ⇥ 10

�5 can be obtained from one year at 87.9GeV and one year
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than the accuracy of the (average) beam energy measurement. The relative centre-of-mass
energy spread � is

p
2 times smaller, i.e., of the order of 0.08%. The shift �Aµµ
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predicted asymmetry and its measured value at a centre-of-mass energy p
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which yields, with the functional form of Aµµ
FB(s) given in Eq. 4.2 expanded around s±:
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i.e., numerically

�AFB

AFB
(s�) = �3.0⇥ 10

�5
and

�AFB

AFB
(s+) = +3.1⇥ 10

�5, (4.8)

under the reasonable assumption that the beam energy spread values are similar at p
s±

and mZ.
The relative changes of AFB(s±) are of the order of the statistical uncertainty, and

larger than the uncertainty originating from the beam energy measurement. These changes
are, however, of opposite sign, and lead to a remarkable cancellation by more than one order
of magnitude in the determination of ↵0. Indeed, the combination of Eqs. 2.13 and 3.3 leads
to the following estimate of the bias on ↵0:

�↵0

↵0
' 0.528

�AFB

AFB
(s�) + 0.563

�AFB

AFB
(s+) ' +1.6⇥ 10

�6. (4.9)

The uncertainty on this small bias (which is to be corrected for) depends on the accuracy
with which the beam energy spread in known. For example, the measurement of bunch
length from the distribution of the µ+µ� event primary vertices determined directly by
the FCC-ee experiments would allow a precise determination of the beam energy spread.
A precision of 2.5% could be reached with this method at LEP [18], yielding a negligible
uncertainty on the ↵QED(m

2
Z) determination.

4.1.3 Muon identification efficiency and detector acceptance

In Eq. 2.10, the asymmetry is determined under the assumption of a 100% muon identi-
fication efficiency and a 4⇡ detector acceptance. This equation is still valid for a smaller
efficiency, with the condition that it is independent of the muon polar angle. If instead the
identification efficiency times the detector acceptance is a non-trivial function of the polar
angle, "(cos ✓), the measured muon angular distribution gets modified accordingly, and so
does the measured forward-backward asymmetry.

This issue can be solved experimentally with the observation [19] that a e

+
e

� ! µ+µ�

event contains not only a negative muon but also a positive muon, the measured angular
distributions of which are given by Eqs. 2.8 and 2.10 modified with "(cos ✓):

dN±

d cos ✓
/

⇢
1 + cos

2 ✓ ± 8

3

Aµµ
FB cos ✓

�
⇥ "(cos ✓), (4.10)
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5 Conclusions and outlook

In this paper, it has been shown that the measurement of the muon forward-backward
asymmetry at the FCC-ee, with six months of data taking just below (

p
s = 87.9GeV) and

just above (
p
s = 94.3GeV) the Z peak, as part of the Z resonance scan, would open the

opportunity of a direct measurement of the electromagnetic constant ↵QED(m
2
Z), with a

relative statistical uncertainty of the order of 3⇥ 10

�5.
A comprehensive list of sources for experimental, parametric, theoretical systematic

uncertainties has been examined. Most of these uncertainties have been shown to be under
control at the level of 10

�5 or below, as summarized in Table 1. A significant fraction
of those benefits from a delicate cancellation between the two asymmetry measurements.
The knowledge of the beam energy, both on- and off-peak, turns out to be the dominant
contribution, albeit still well below the targeted statistical power of the method.

Type Source Uncertainty
Ebeam calibration 1⇥ 10

�5

Ebeam spread < 10

�7

Experimental Acceptance and efficiency negl.
Charge inversion negl.
Backgrounds negl.
mZ and �Z 1⇥ 10

�6

Parametric sin

2 ✓W 5⇥ 10

�6

GF 5⇥ 10

�7

QED (ISR, FSR, IFI) < 10

�6

Theoretical Missing EW higher orders few 10

�4

New physics in the running 0.0

Total Systematics 1.2⇥ 10

�5

(except missing EW higher orders) Statistics 3⇥ 10

�5

Table 1. Summary of relative statistical, experimental, parametric and theoretical uncertainties to
the direct determination of the electromagnetic coupling constant at the FCC-ee, with a one-year
running period equally shared between centre-of-mass energies of 87.9 and 94.3GeV, corresponding
to an integrated luminosity of 85 ab�1.

The fantastic integrated luminosity and the unique beam-energy determination are the
key breakthrough advantages of the FCC-ee in the perspective of a precise determination of
the electromagnetic coupling constant. Today, the only obstacle towards this measurement
– beside the construction of the collider and the delivery of the target luminosities – stems
from the lack of higher orders in the determination of the electroweak corrections to the
forward-backward asymmetry prediction in the standard model. With the full one-loop
calculation presently available for these corrections, a relative uncertainty on Aµµ

FB of the
order of a few 10

�4 is estimated. An improvement deemed adequate to match the FCC-ee
experimental precision might require a calculation beyond two loops, which may be beyond
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The variation of Aµµ
FB as a function of the centre-of-mass energy, as obtained from

Eq. 2.10, is shown in Fig. 3. In the above expressions, the photon-exchange term is totally
symmetric, hence is absent from the numerator. Because v4/a4 ' 3⇥10

�5, the Z-exchange
term contribution to the asymmetry is minute, except at the Z pole where the interference
term vanishes and the asymmetry is small: Aµµ

FB,0 = (3/4) ⇥ 4v2a2/(a2 + v2)2 ' 0.016.
The interference term, on the other hand, is almost 100% anti-symmetric and contributes
mostly to the numerator. (The contribution of the interference term to the denominator,
i.e., to the total cross section, can be neglected as shown in Fig. 2.)
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Figure 3. The muon forward-backward asymmetry in e

+
e

� ! µ+µ� as a function of the centre-
of-mass energy.

The off-peak muon forward-backward asymmetry can therefore be expressed as follows:

Aµµ
FB = Aµµ

FB,0 +
3

4

a2

v2

I
G + Z . (2.11)

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates to

a variation �Aµµ
FB of the muon forward-backward asymmetry:

�Aµµ
FB =

�↵

↵
⇥ 3

4

a2

v2

I(Z � G)
(G + Z)

2
=

⇣
Aµµ

FB �Aµµ
FB,0

⌘
⇥ Z � G

Z + G ⇥ �↵

↵
. (2.12)

In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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At the FCC-ee [16], this accuracy has been estimated [2, 17] to be of the order of 50 keV
around the Z pole, of which 45 (23) keV are (un)correlated between all energy points,
corresponding to a total relative uncertainty of 10�6. The derivative of the muon forward-
backward asymmetry with respect to the centre-of-mass energy, however, is largest around
the Z pole, as can be seen from Fig. 3. It is therefore important to check that this expected
precision is indeed sufficient.

At p
s� and p

s+, the photon contribution is only 5% of the total cross section and
varies slowly with the centre-of-mass energy around the Z pole (Fig. 2): this contribution
can be considered as a second order effect in the uncertainty evaluation. Equations 2.11
and 2.13 therefore simplify to

Aµµ
FB(s±) '

3

4

a2

v2

I
Z and

�↵±
↵±

' �Aµµ
FB

Aµµ
FB

. (4.1)

The dependence of I and Z on s and mZ is given at the beginning of Section 2. The
forward-backward asymmetry dependence on s and mZ in the vicinity of the Z pole is
simply

Aµµ
FB(s,mZ) / (s�m2

Z)/(sm
2
Z). (4.2)

The uncertainties on
p
s and mZ both amount to 95 keV, are dominated by the un-

certainty of the beam energy measurement, and are largely correlated as indicated above.
The uncorrelated variables are therefore the difference D =

p
s � mZ and the average

⌃ = (

p
s + mZ)/2., with uncertainties of �D = 46 keV and �⌃ = 94 keV, respectively. A

straightforward error propagation yields

�(Aµµ
FB)

Aµµ
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' 1p
smZ

r
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Z �p
smZ
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+

�
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�2 �2
⌃

⌃

2
, (4.3)

which in turn simplifies to, at p
s±,

�(↵±)

↵±
' �D±

D±
, with D± =

p
s± �mZ, (4.4)

after neglecting the much smaller term proportional to (�⌃/⌃)
2. Numerically, the relative

uncertainties on ↵±, or equivalently on 1/↵±, arising from the beam energy measurement
both amount to 1.4 ⇥ 10

�5 and are uncorrelated. The uncertainty on the coefficient ⇠

(±0.00001) was found to have a totally negligible contribution (±2⇥ 10

�9) to the relative
uncertainty on ↵0 . Only the (uncorrelated) errors on ↵� and ↵+ contribute. As a conse-
quence, the relative uncertainty on ↵QED(m

2
Z) arising from the beam energy measurement

amounts to

�(↵0)
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s

(1� ⇠)2
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(↵�)

↵2
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+ (1 + ⇠)2
�2

(↵+)

↵2
+

' 1⇥ 10

�5. (4.5)

4.1.2 Beam energy spread

At the FCC-ee, the relative beam energy spread � for centre-of-mass energies around the
Z pole is expected [12] to be of the order of 0.12%, i.e., two orders of magnitude larger
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At the FCC-ee, the relative beam energy spread � for centre-of-mass energies around the
Z pole is expected [12] to be of the order of 0.12%, i.e., two orders of magnitude larger
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Missing	EW	higher	orders:	few	10-4	
q  See	presentation	on	Tuesday	(Sven	Heinemeyer)		

◆  Current	status:	full	one-loop	calculation	available	
●  Box	EW	correction	:	8-9	×	10-4	
●  Vertex	EW	correction	:	~10-3	
●  Uncertainty	:	few	10-4	

◆  Higher-order	corrections	computable	with	current	techniques	
●  At	the	level	of	a	few	10-4	
●  Uncertainty	:	few	10-5		-	This	is	what	we	need.		

◆  New	techniques	might	be	needed	for	3-loop	corrections	
●  At	the	level	of	a	few	10-5	
●  Uncertainty	:	<	10-5	

q  Significant	precision	improvement	needed	for	all	EWPO	predictions	
◆  Need	to	set	up	a	consistent	international	effort	now	

●  To	benefit	from	the	experience	of	our	experts	
●  To	train	a	new	generation	of	theorists	
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Determination of ∆αhad 9/11

S =
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M2
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Current status: full 1-loop for gℓ
γ, gℓ ′

Z , Sbox

Bardin et al. ’99 (ZFITTER 6.21)

Relative impact on Aµµ
FB(s2) − Aµµ

FB(s1)

for √s1 = 88 GeV, √s2 = 95 GeV:

gℓ
γ 1-loop: 2 × 10−4

gℓ
Z 1-loop: 1 × 10−3

Sbox 1-loop: 1 × 10−3
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Efficiency	and	acceptance:	negligible	
q  At	lowest	order	in	QED	(no	ISR/FSR/IFI)	

◆  Any	cosθ-dependent	efficiency	and	acceptance	ε(cosθ)	can	be	unfolded	as	follows	

◆  AFB	is	thus	obtained	from	µ+/µ-	asymmetry	in	each	cosθ	bin	

q  Effect	of	QED	initial-state	radiation	(no	FSR/IFI)	
◆  ISR	changes	the	muon	angular	distribution	

●  Because	of	the	longitudinal	boost	
●  Because	of	the	reduction	of	√s	(	ΔAFB	< 0)	

◆  	Both	effect	can	be	dealt	with	in	case	of	one	ISR	photon	

	
◆  Measure	A±(s’/s,	cosθ*)	in	each	cosθ* bin	

●  And	fit	for	AFB
µµ(s’/s)	
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4.3.2 Initial-state radiation (ISR)

Initial-state radiation corrections are known up to order O(↵2
) with soft-photon exponenti-

ation [24]. Unlike FSR, ISR has a macroscopic influence on the forward-backward asymme-
try. Photons from ISR are emitted mostly along the beam axis, with a twofold consequence:
(i) the centre-of-mass frame of the muon pair therefore acquires a longitudinal boost, which
modifies the angular distribution of both muons in a non trivial way; and (ii) the effective
centre-of-mass energy of the collision is reduced to

p
s0 where s0 = (1 � x�)(1 � x+)s and

x± = E�
±/

p
s are the fractional radiated energies by the e

± beams, which modifies the
asymmetric term of the cross section through Aµµ

FB(s
0
). As Aµµ

FB(s
0
) varies quite fast withp

s0, as displayed in Fig. 3 and expressed in Eq. 4.15, a large, negative, variation of the
measured asymmetry is indeed to be expected.

When only one ISR photon is radiated by one of the two beams, the effects can be
largely mitigated. In the vast majority of the cases, the photon is radiated exactly along
the beam axis. The polar angles of the outgoing muons, denoted ✓±, suffice in that case to
determine the effective centre-of-mass energy

p
s0:

s0

s
=

sin ✓+ + sin ✓� � |sin(✓+ + ✓�)|
sin ✓+ + sin ✓� + |sin(✓+ + ✓�)| , (4.19)

as well as the µ+ direction in the centre-of-mass frame of the muon pair

cos ✓⇤ =
sin(✓+ � ✓�)

sin ✓+ + sin ✓�
. (4.20)

In this simplest configuration, the use of cos ✓⇤ entirely corrects for the effect of the longitu-
dinal boost on the angular distribution, and the forward-backward asymmetry dependence
on s0/s can be studied explicitly. Furthermore, the events relevant for the determination
of ↵± can be selected by requiring s0/s to be close to unity. If the initial-state photon is
radiated with a finite angle with respect to the beam axis, however, Eqs. 4.19 and 4.20 no
longer hold, but the corresponding events can be rejected by requiring the two muons to
be back-to-back in the plane transverse to the beam axis.

In rare cases, both beams can radiate photons, which render these two equations only
approximate, and may still create a bias in the forward-backward asymmetry. To deter-
mine the effect of this approximation, large samples of µ+µ� events were generated atp
s±. The simulation of ISR was performed with the REMT package [25] modified to include

O(↵2
) correcctions with soft-photon exponentiation, and the possibility to radiate up to

two photons. For the reasons just explained, only events with s0/s in excess of 0.999 and an
acoplanarity angle between the two muons smaller than 0.35 mrad were considered. These
two cuts typically select about 80% of the cross section in Fig. 2, and tremendously increase
the purity towards events without ISR. The blue histograms in Figs. 7 show, for

p
s =

p
s�

and p
s+, the relative biasses on Aµµ

FB(s
0
±) with respect to the standard model prediction,

as a function of 1� s0/s and for a perfect muon angular resolution, �✓ = �� = 0.
Events with only one ISR photon would lead to a blue straight line at �AFB/AFB ⌘ 0.0,

as s0/s can be exactly determined in that case from Eq. 4.19. The possibility to radiate
photons from the two beams, however, induces a visible systematic effect on the measured
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Initial-state	radiation	(no	FSR/IFI)	
q  The	s’/s	and	cosθ* determination	is	no	longer	exact	when		

◆  Two	ISR	photons	are	radiated	
◆  The	muon	angular	resolution	of	the	detector	is	not	perfect		
◆  The	beam	energy	spread	is	not	negligible	(comment	from	Mogens	Dam)	

●  All	generate	important	biasses	on	the	measurement	of	AFB(s’/s)	

◆  Changes	the	asymmetry	by	up	to	2%	at	√s	=	87.9	GeV	!	
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σ(√s)/√s = 7×10-4 σ(√s)/√s = 0 
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q  The	s’/s	and	cosθ* determination	is	no	longer	exact	when		
◆  Two	ISR	photons	are	radiated	
◆  The	muon	angular	resolution	of	the	detector	is	not	perfect		
◆  The	beam	energy	spread	is	not	negligible	(comment	from	Mogens	Dam)	

●  All	generate	important	biasses	on	the	measurement	of	AFB(s’/s)	

◆  Changes	the	asymmetry	by	up	to	2%	at	√s	=	87.9	GeV	!	
●  But	the	absolute	effect	on	AFB	is	universal	:	it	is		~identical	at	√s	=	94.3	GeV		

Initial-state	radiation	(no	FSR/IFI)	
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σ(√s)/√s = 7×10-4 σ(√s)/√s = 0 

ΔAFB/AFB(s-)	> 0 and	ΔAFB/AFB(s+) < 0	
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These two systematic biasses are much larger, by two orders of magnitude, than the
target precision with which the forward-backward asymmetry needs to be measured. These
biasses can be corrected for if (i) the energy and angular distributions of initial-state radia-
tion can be predicted with an accuracy better than 1%, which is probably the case already
today; and if (ii) the muon angular resolution can be mapped with a precision of a few per
mil over the whole detector acceptance, which is probably feasible with the large samples
of K0

s ’s, ⇤’s and even J/ ’s expected at the FCC-ee.
The predicted relative biasses, however, appear to be quasi-"universal", in the sense

that they are similar in amplitude below and above the Z peak, albeit in opposite directions.
The combination of the two measurements towards a determination of ↵QED(m

2
Z) with

Eq. 4.9 exhibits an almost perfect cancellation in all bins, as displayed in Fig. 8 as a
function of 1 � s0/s, with the same vertical scale as in Figs. 7. When integrated over
all bins, the total relative bias on ↵QED(m

2
Z) amounts to �8 ⇥ 10

�6, i.e., well below the
target statistical precision of a few 3⇥ 10

�5. The aforementioned theoretical knowledge of
initial-state radiation and the in-situ determination of the angular resolution would allow
this residual bias to be predicted and corrected for, with a precision at least an order of
magnitude better.
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Figure 8. Relative bias and statistical uncertainty on the electromagnetic coupling constant
estimated at the Z mass scale, as a function 1 � s0/s , from measurements of the muon forward-
backward asymmetry at p

s±, with a perfect muon angular resolution (blue histogram) and with
�✓ = �� = 0.1mrad (red histogram).
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q  Cancellation	of	the	biasses	when	combining	the	two	measurements	

	
◆  Total	bias	on	αQED(mZ

2)	of	the	order	of	8	×	10-6	
●  And	is	well	predictable	by	QED	soft	photon	prediction:	negligible	uncertainty	

q  Note:	√s-spread	also	changes	the	average	√s	due	to	non	flat	cross	section	
◆  Additional	bias	of	8	×	10-5	on	αQED(mZ

2)	:	must	know	√s-spread	to	better	than	10%	

Initial-state	radiation	(no	FSR/IFI)	

11-15 April 2016 
FCC Week 2016 (Rome) 

18 

than the accuracy of the (average) beam energy measurement. The relative centre-of-mass
energy spread � is

p
2 times smaller, i.e., of the order of 0.08%. The shift �Aµµ

FB between the
predicted asymmetry and its measured value at a centre-of-mass energy p

s± is therefore

�Aµµ
FB(s±) =

1p
2⇡s±�

Z
Aµµ

FB(s) exp�
�p

s�p
s±

�2

2s±�2
d
p
s�Aµµ

FB(s±), (4.6)

which yields, with the functional form of Aµµ
FB(s) given in Eq. 4.2 expanded around s±:

�Aµµ
FB

Aµµ
FB

(s±) ' 3m2
Z

s± �m2
Z

�2, (4.7)

i.e., numerically

�AFB

AFB
(s�) = �3.0⇥ 10

�5
and

�AFB

AFB
(s+) = +3.1⇥ 10

�5, (4.8)

under the reasonable assumption that the beam energy spread values are similar at p
s±

and mZ.
The relative changes of AFB(s±) are of the order of the statistical uncertainty, and

larger than the uncertainty originating from the beam energy measurement. These changes
are, however, of opposite sign, and lead to a remarkable cancellation by more than one order
of magnitude in the determination of ↵0. Indeed, the combination of Eqs. 2.13 and 3.3 leads
to the following estimate of the bias on ↵0:

�↵0

↵0
' 0.528

�AFB

AFB
(s�) + 0.563

�AFB

AFB
(s+) ' +1.6⇥ 10

�6. (4.9)

The uncertainty on this small bias (which is to be corrected for) depends on the accuracy
with which the beam energy spread in known. For example, the measurement of bunch
length from the distribution of the µ+µ� event primary vertices determined directly by
the FCC-ee experiments would allow a precise determination of the beam energy spread.
A precision of 2.5% could be reached with this method at LEP [18], yielding a negligible
uncertainty on the ↵QED(m

2
Z) determination.

4.1.3 Muon identification efficiency and detector acceptance

In Eq. 2.10, the asymmetry is determined under the assumption of a 100% muon identi-
fication efficiency and a 4⇡ detector acceptance. This equation is still valid for a smaller
efficiency, with the condition that it is independent of the muon polar angle. If instead the
identification efficiency times the detector acceptance is a non-trivial function of the polar
angle, "(cos ✓), the measured muon angular distribution gets modified accordingly, and so
does the measured forward-backward asymmetry.

This issue can be solved experimentally with the observation [19] that a e

+
e

� ! µ+µ�

event contains not only a negative muon but also a positive muon, the measured angular
distributions of which are given by Eqs. 2.8 and 2.10 modified with "(cos ✓):

dN±

d cos ✓
/

⇢
1 + cos

2 ✓ ± 8

3

Aµµ
FB cos ✓

�
⇥ "(cos ✓), (4.10)
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4.3.3 Interference between initial- and final-state radiation (IFI)

While initial-state radiation does not change the functional form of the muon angular
distribution, the interference between initial-state and final-state occurs preferably when the
final state muons are close to the initial state electrons, hence does affect their distribution
in the forward and backward directions beyond the usual (1 + cos

2 ✓⇤) + 8/3AFB cos ✓⇤

formula.
It is shown in Ref. [23] that the muon angular distribution is be modified by a multiplica-

tive factor with a characteristic logarithmic dependence on cos ✓⇤, and can be parameterized
as

d�µµ
d cos ✓⇤

(s0) /
⇢
1 + cos

2 ✓⇤ +
8

3

AFB(s
0
) cos ✓⇤

�
⇥
⇢
1 + f

✓
s0

s

◆
log

1 + cos ✓⇤

1� cos ✓⇤

�
, (4.21)

in presence of a tight muon acoplanarity cut as suggested in the previous section. The
multiplicative factor contains an additional asymmetric term, which enhances the integrated
muon forward-backward asymmetry. The tight cut on s0/s aimed at rejecting ISR also
reduces IFI in similar proportions. To mitigate the very small residual effect of IFI on the
angular distribution, the specific shape of the additional contribution can be fitted away,
as was done at LEP and with the benefit of the much larger data samples expected at the
FCC-ee. On the other hand, this additional contribution appears to be "universal", (i.e.,
with an amplitude that depends only on s0/s, similarly to what is observed for ISR), hence
cancels out in the determination of ↵QED(m

2
Z) from a combination of the measurements at

the two centre-of-mass energies, with no loss of statistical power.

4.3.4 Other electroweak higher-order corrections

Other electroweak corrections have so far "only" been computed off-peak with complete
one-loop calculation [27]. One-loop box corrections lead to relative changes of �9⇥10

�4 atp
s� and �8⇥ 10

�4 at ps+ from the improved Born approximation of Aµµ
FB �Aµµ

FB,0, hence
to a shift of ↵QED(mZ) at the per-mil level. A shift of similar size arises from one-loop
vertex corrections. The theoretical uncertainty arising from the missing higher orders in
the asymmetry calculation, estimated to be at the level of a few 10

�4 [28], was adequate at
the time of LEP but is insufficient today to match the precision offered by the FCC-ee.

An order of magnitude improvement would be achievable today, with proven techniques,
by including the dominant two-loop and leading three-loop corrections, and would represent
a major breakthrough towards the FCC-ee targets. Meeting these targets might require a
complete three-loop calculation, including three-loop box corrections, perhaps a serious
challenge with the current techniques, and definitely beyond the scope of the present work.
It is not unlikely, however, that a large part of these missing corrections affect in the same
way the asymmetry at 87.9 GeV and the asymmetry at 94.3 GeV. If it were the case, the
↵QED(m

2
Z) determination would enjoy a cancellation similar to the that observed for QED

corrections, which could suffice even without a complete three-loop calculation.

– 19 –

q  See	also	Staszek	Jadach’s	talk	on	Tuesday	
◆  Angular	distribution	modified	with	another	totally	asymmetric	function	

◆  Effect	is	large	(unlike	what	I	inferred	in	arXiv:1512:05544)	
●  It	is	larger	for	tighter	cuts	on	s’/s	

◆  Cancellation	still	occurs	between	s_	and	s+	
●  But	the	simple	trick	with	A±(cosθ)	needs	to	be	refined	

(+FSR) 

IFI ≈ Qµ-×Qe- or	Qµ+×Qe+ > 0	 IFI ≈ Qµ+×Qe- or	Qµ-×Qe+ < 0	

Initial-Final-state	Interference	(IFI)	
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F(s’/s, cosθ*)=F Creates		
yet	another		
asymmetry	
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Initial-Final-state	Interference	(IFI)	
q  Plot	from	Staszek’s	talk	

◆  In	this	plot,	AFB	is	determined	as		

◆  Relative	effect	on	AFB(s±)	of	the	
order	of	10%	for		a	tight	cut	on	s’/s	

	
◆  Relative	effect	on	the	difference	of	

the	order	of	0.2%	[~used	to	
determine	αQED(mZ

2)]	

◆  Requires	IFI	to	be	predicted	to	a	
precision	better	than	1%	to	reach	
the	required	precision	on	αQED(mZ

2)	
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Cut	on	1-s’/s	

with the following definitions:

c� =

r
4⇡

3

↵QED(s), cZ =

r
4⇡

3

m2
Z

2⇡

GFp
2

, a = �1

2

, v = a ⇥ (1� 4 sin

2 ✓W), (2.4)

and where ✓W is the effective Weinberg angle (sin2 ✓W ' 0.2315).
An absolute measurement of the µ+µ� production cross section �µµ = Z + I + G is

therefore a priori sensitive to ↵QED through the interference term and the �-exchange term.
The cross section and the three contributing terms are displayed in Fig. 2 as a function of the
centre-of-mass energy

p
s, with the inclusion of initial state radiation (ISR). In this figure,

the effective collision energy after ISR, denoted
p
s0, is required to satisfy s0 > 0.99s. The

importance of such a requirement on s0, together with the way to control it experimentally,
is discussed in Section 4.3.2.

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates

to a variation ��µµ of the cross section :

��µµ =

�↵

↵
(I + 2G). (2.5)

As is well visible in Fig. 2, the interference term can be neglected in the above equation.
As a consequence, if the cross section can be measured with a precision ��µµ, the relative
precision on the electromagnetic coupling constant amounts to

�↵

↵
' ��µµ

2G ' 1

2

��µµ
�µµ

✓
1 +

Z
G
◆
. (2.6)

The target statistical precision of 2 ⇥ 10

�5 on ↵QED can therefore be achieved with
more than 10

9 µ+µ� events and at centre-of-mass energy where the Z contribution to the
cross section is much smaller than the photon contribution. These two conditions call for
a centre-of-mass energy smaller than 70 GeV, where the cross section is both large and
dominated by the photon contribution. Beside the fact that this centre-of-mass energy is
not in the current core programme of the FCC-ee and that the needed integrated luminosity
of 50 ab�1 would require at least a year of running at this energy in the most favourable
conditions, the measurement itself poses a number of intrinsic difficulties. Indeed, the
absolute measurement of a cross section with a precision of a few 10

�5 requires the selection
efficiency, the detector acceptance, and the integrated luminosity to be known with this
precision or better. Even if not impossible to meet, these requirements are exceedingly
challenging in the extraction of ↵QED from this method with the needed precision.

The muon forward-backward asymmetry, Aµµ
FB, defined as

Aµµ
FB =

�F
µµ � �B

µµ

�F
µµ + �B

µµ
, (2.7)

where �
F(B)
µµ is the µ+µ� cross section for events with the µ� direction in the forward

(backward) hemisphere with respect to the e

�-beam direction, hence with �F
µµ+�B

µµ = �µµ,
solves most of these obstacles. Indeed, it is a self-normalized quantity, which thus does not

– 4 –
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Initial-Final-state	Interference	(IFI)	
q  Best	would	be	to	fit	IFI	effect	away	from	the	data	–	at	least	partially	

◆  Characteristic	effect	similar	at	all	√s	:	simultaneous	fit	may	bring	an	elegant	solution	
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IFI	Off	
IFI	On	

IFI	Off	
IFI	On	

107 events 107 events 107 events 

107 events 107 events 107 events 

1-s’/s < 10-4	

107	events	produced	with	KKMC	by	Scott	Yost	and	Staszek	Jadach	
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 Initial-Final-state	Interference	(IFI)	
q  Once	IFI	is	fit	from	the	data	(to	be	done)		

◆  I	still	need	to	find	my	way	(analytically	or	not)	towards	a	satisfactory	fit	
●  And	benefit	from	the	full	cancellation	of	the	IFI	bias	between	s+	and	s-		

◆  The	IFI	functional	form	can	also	be	taken	from	Monte	Carlo	
●  In	this	case,	it	has	to	be	predicted	with	a	precision	of	a	few	10-3

	
  	

➨  Towards	a	precision	on	αQED(mZ
2)	of	few	10-5		
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4.3.3 Interference between initial- and final-state radiation (IFI)

While initial-state radiation does not change the functional form of the muon angular
distribution, the interference between initial-state and final-state occurs preferably when the
final state muons are close to the initial state electrons, hence does affect their distribution
in the forward and backward directions beyond the usual (1 + cos

2 ✓⇤) + 8/3AFB cos ✓⇤

formula.
It is shown in Ref. [23] that the muon angular distribution is be modified by a multiplica-

tive factor with a characteristic logarithmic dependence on cos ✓⇤, and can be parameterized
as

d�µµ
d cos ✓⇤

(s0) /
⇢
1 + cos

2 ✓⇤ +
8

3

AFB(s
0
) cos ✓⇤

�
⇥
⇢
1 + f

✓
s0

s

◆
log

1 + cos ✓⇤

1� cos ✓⇤

�
, (4.21)

in presence of a tight muon acoplanarity cut as suggested in the previous section. The
multiplicative factor contains an additional asymmetric term, which enhances the integrated
muon forward-backward asymmetry. The tight cut on s0/s aimed at rejecting ISR also
reduces IFI in similar proportions. To mitigate the very small residual effect of IFI on the
angular distribution, the specific shape of the additional contribution can be fitted away,
as was done at LEP and with the benefit of the much larger data samples expected at the
FCC-ee. On the other hand, this additional contribution appears to be "universal", (i.e.,
with an amplitude that depends only on s0/s, similarly to what is observed for ISR), hence
cancels out in the determination of ↵QED(m

2
Z) from a combination of the measurements at

the two centre-of-mass energies, with no loss of statistical power.

4.3.4 Other electroweak higher-order corrections

Other electroweak corrections have so far "only" been computed off-peak with complete
one-loop calculation [27]. One-loop box corrections lead to relative changes of �9⇥10

�4 atp
s� and �8⇥ 10

�4 at ps+ from the improved Born approximation of Aµµ
FB �Aµµ

FB,0, hence
to a shift of ↵QED(mZ) at the per-mil level. A shift of similar size arises from one-loop
vertex corrections. The theoretical uncertainty arising from the missing higher orders in
the asymmetry calculation, estimated to be at the level of a few 10

�4 [28], was adequate at
the time of LEP but is insufficient today to match the precision offered by the FCC-ee.

An order of magnitude improvement would be achievable today, with proven techniques,
by including the dominant two-loop and leading three-loop corrections, and would represent
a major breakthrough towards the FCC-ee targets. Meeting these targets might require a
complete three-loop calculation, including three-loop box corrections, perhaps a serious
challenge with the current techniques, and definitely beyond the scope of the present work.
It is not unlikely, however, that a large part of these missing corrections affect in the same
way the asymmetry at 87.9 GeV and the asymmetry at 94.3 GeV. If it were the case, the
↵QED(m

2
Z) determination would enjoy a cancellation similar to the that observed for QED

corrections, which could suffice even without a complete three-loop calculation.
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F(s’/s, cosθ*)=F 

N±(cosθ)	≈	N0	×	ε(cosθ)	×	 

AFB =
3
4

1+ cos2ϑ
2cosϑ

A± −F
1− A±F

    with   A± =
N−(cosϑ )− N+(cosϑ )
N−(cosϑ )+ N+(cosϑ )

 

± ± 
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Conclusions	
q  The	FCC-ee	can	deliver	a	direct	measurement	of	αQED(mZ

2)	to	3	×	10-5	
◆  With	an	accuracy	4-5	times	smaller	than	current	measurements	of	Δαhad	

●  Needed	to	exploit	EWPO	measurements	at	ANY	e+e-	collider	

q  The	FCC-ee	is	the	only	e+e-	collider	able	to	do	so	(because	it	is	circular)	
◆  First	key	breakthrough:	The	large	integrated	luminosities		

●  Target	luminosities	with	4	IP’s	allow	this	measurement	to	be	done	in	a	year	
◆  Second	key	breakthrough:	The	ultra-precise	measurement	of	the	beam	energy	

●  Two	orders	of	magnitude	better	than	at	linear	colliders	
➨  Still	the	dominant	experimental	systematic	uncertainty	at	the	FCC-ee	
➨  Note:	The	beam	energy	spread	must	also	be	measured	to	~10%	or	better	

q  The	only	obstacle	today	(beyond	building	the	collider)	is	THEORY	
◆  Pure	QED	corrections	(in	particular	IFI)	can	probably	be	fit	from	the	data	

●  Or	will	need	to	be	predicted	with	a	precision	of	a	few	10-3	

◆  Electroweak	corrections	to	AFB	need	to	be	computed	to	higher	orders	
●  Today,	full	one-loop	calculation	available,	uncertainty	~	few	10-4	

◆  A	consistent	international	effort	must	be	setup	for	all	EWPO	predictions.	
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