Direct measurement of $\alpha_{QED}(m_Z^2)$ @ FCC-ee

- Outline
 - Why measure $\alpha_{QED}(m_Z^2)$?
 - Physics behind precision
 - Impact of $\alpha_{QED}(m_Z^2)$ precision
 - Sensitivity of of $e^+e^- \rightarrow \mu^+\mu^-$ to $\alpha_{QED}(m_Z^2)$
 - Cross section
 - Forward-backward asymmetry
 - Statistical uncertainty and sensitivity
 - Determination of $\alpha_{QED}(m_Z^2)$
 - Systematic uncertainties
 - A few highlights and follow-ups
 - Conclusions

See arXiv:1512:05544 (Published as JHEP 2016(2) 1-22)

Physics behind precision

• EWPO measurements allow a prediction of m_{top} , m_{W} , m_{H} , $sin^2\theta_W$ in the SM

- Compare with FCC-ee direct measurements
 - The standard model has nowhere to go

Impact of $\alpha_{QED}(m_Z^2)$ precision

- Uncertainty on these predictions are of two origins
 - Parametric
 - Higher orders
- For m_w and $sin^2\theta_w$ today (see Sven Heinemeyer's talk on Tuesday)

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{had}}$$

Exp: 0.015 $\pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{theo}$
= $80.359 \pm 0.011_{tot}$

$$\begin{aligned} \sin^2 \theta_{\text{eff}}^{\ell} &= 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ &\pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}} \end{aligned}$$
$$= 0.23150 \pm 0.00010_{\text{tot}}$$

Impact of $\alpha_{QED}(m_Z^2)$ precision

- Must reduce current exp'tal uncertainty on $\alpha_{QED}(m_Z^2)$ by a factor ~4-5
 - New generation of theoretical calculations is necessary to gain a factor 10 in precision

• The $e^+e^- \rightarrow \mu^+\mu^-$ cross section

$$c_{\gamma} = \sqrt{\frac{4\pi}{3}} \alpha_{\text{QED}}(s), \quad c_{\text{Z}} = \sqrt{\frac{4\pi}{3}} \frac{m_{\text{Z}}^2}{2\pi} \frac{G_{\text{F}}}{\sqrt{2}}, \quad a = -\frac{1}{2}, \quad v = a \times (1 - 4\sin^2\theta_{\text{W}}),$$
(~-0.037)

- Photon exchange (G) proportional to α^2 (s)
- ✤ Z exchange (Z) proportional to G_F²
- Interference term proportional to $\alpha(s) G_F$
 - Need to choose \sqrt{s} judiciously to maximize sensitivity to $\alpha(s)$
 - If \sqrt{s} is close to m_z , the $\sqrt{s} \rightarrow m_z$ extrapolation uncertainty is negligible

• The $e^+e^- \rightarrow \mu^+\mu^-$ cross section

- The $e^+e^- \rightarrow \mu^+\mu^-$ angular distribution
 - Absolute cross section measurement might be challenging to the required precision
 - Uncertainty of the integrated luminosity determination Rely of a self-normalizing quantity, the forward-backward asymmetry $A_{\text{FB}}^{\mu\mu} = \frac{\sigma_{\mu\mu}^{\text{F}} \sigma_{\mu\mu}^{\text{B}}}{\sigma_{\mu\mu}^{\text{F}} + \sigma_{\mu\mu}^{\text{B}}},$

$$A_{\rm FB}^{\mu\mu} = A_{\rm FB,0}^{\mu\mu} + \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}}{\mathcal{G} + \mathcal{Z}} d\mathbf{Z} = 0 \quad d\mathbf{I}/d\alpha = \mathbf{I}/\alpha \quad d\mathbf{G}/d\alpha = 2\mathbf{G}/\alpha$$

+ For a small variation $\Delta \alpha$

$$\Delta A_{\rm FB}^{\mu\mu} = \frac{\Delta\alpha}{\alpha} \times \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}(\mathcal{Z} - \mathcal{G})}{(\mathcal{G} + \mathcal{Z})^2} = \left(A_{\rm FB}^{\mu\mu} - A_{\rm FB,0}^{\mu\mu}\right) \times \frac{\mathcal{Z} - \mathcal{G}}{\mathcal{Z} + \mathcal{G}} \times \frac{\Delta\alpha}{\alpha}.$$

$$\frac{\Delta\alpha}{\alpha} = \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu} - A_{\rm FB,0}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}} \simeq \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}},$$

Statistical uncertainty on A_{FB}

$$\sigma \left(A_{\rm FB}^{\mu\mu} \right) = \sqrt{\frac{1 - A_{\rm FB}^{\mu\mu\,2}}{\mathcal{L}\sigma_{\mu\mu}}}.$$

- **o** Comparison of the sensitivity and the statistical uncertainty
 - Statistical uncertainty: one year with target luminosities (86 ab⁻¹ at the Z pole)
 - Compared with ΔA_{FB} for current α_{QED} uncertainty

• ΔA_{FB} changes sign for $\sqrt{s} = m_z$ and when Z = G (78 and 112 GeV): no sensitivity to α_{QED}

• Turning the previous plot in a $\sigma(\alpha)/\alpha$ plot, for a year of running at any \sqrt{s}

- Optimal centre-of-mass energies for a 3×10⁻⁵ uncertainty on α_{QED}
 - One year at $\sqrt{s_{-}} = 87.9$ GeV or one year at $\sqrt{s_{+}} = 94.3$ GeV
 - Even better: six months at $\sqrt{s_-}$ and six months at $\sqrt{s_+}$

Determination of $\alpha_{QED}(m_Z^2)$

- **Two measurements**
 - Two asymmetries at two \sqrt{s} : $A_{FB}(s_{-})$ and $A_{FB}(s_{+})$

$$\alpha_{-} \equiv \alpha_{\text{QED}}(s_{-}) \text{ and } \alpha_{+} \equiv \alpha_{\text{QED}}(s_{+}),$$

 $\hfill\square$ Running from $\sqrt{s_{-\pm}}$ to m_Z gives two determinations of α_0

$$\frac{1}{\alpha_0} = \frac{1}{\alpha_\pm} + \beta \log \frac{s_\pm}{m_{\rm Z}^2}$$

• Solve for $\alpha_0 = \alpha_{QED} (m_Z^2)$

$$\frac{1}{\alpha_0} = \frac{1}{2} \left(\frac{1-\xi}{\alpha_-} + \frac{1+\xi}{\alpha_+} \right), \quad \text{where} \quad \xi = \frac{\log s_- s_+ / m_Z^4}{\log s_- / s_+} \simeq 0.045,$$

 $\hfill\square$ With potential of almost exact cancellations for correlated effects at s_{\pm}

Systematic uncertainties

• Summary of the study

Туре	Source	Uncertainty
Experimental	E_{beam} calibration	1×10^{-5}
	E_{beam} spread	$< 10^{-7}$
	Acceptance and efficiency	negl.
	Charge inversion	negl.
	Backgrounds	negl.
Parametric	$m_{\rm Z}$ and $\Gamma_{\rm Z}$	1×10^{-6}
	$\sin^2 heta_{ m W}$	5×10^{-6}
	$G_{ m F}$	5×10^{-7}
Theoretical	QED (ISR, FSR, IFI)	$< 10^{-6}$
	Missing EW higher orders	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	1.2×10^{-5}
(except missing EW higher orders)	Statistics	3×10^{-5}

Knowledge of the beam energy is crucial

• Strong dependence of A_{FB} with \sqrt{s} (and m_Z)

$$A_{\rm FB}^{\mu\mu}(s, m_{\rm Z}) \propto (s - m_{\rm Z}^2)/(s m_{\rm Z}^2).$$

- Uncertainty of the beam energy measurements
 - Total ~ 50 keV

- of which 45 keV correlated and 23 keV uncorrelated between energy points
- Uncorrelated variables

•
$$D = \sqrt{s} - m_Z$$
 and $\Sigma = (\sqrt{s} + m_Z)/2$

•
$$\sigma_D = 46 \text{ keV} \text{ and } \sigma_{\Sigma} = 94 \text{ keV}$$

• Propagation to
$$A_{FB}$$
 $\frac{\sigma(A_{FB}^{\mu\mu})}{A_{FB}^{\mu\mu}} \simeq \frac{1}{\sqrt{sm_Z}} \sqrt{\left(s + m_Z^2 - \sqrt{sm_Z}\right)^2 \frac{\sigma_D^2}{D^2} + \left(s + m_Z^2 + \sqrt{sm_Z}\right)^2 \frac{\sigma_\Sigma^2}{\Sigma^2}},$

• Propagation to α_{QED} : $\frac{\sigma(\alpha_{\pm})}{\alpha_{\pm}} \simeq \frac{\sigma_{D_{\pm}}}{D_{\pm}}$, with $D_{\pm} = \sqrt{s_{\pm}} - m_{Z}$, (uncorrelated)

$$\frac{\sigma(\alpha_0)}{\alpha_0} \simeq \frac{1}{2} \sqrt{(1-\xi)^2 \frac{\sigma^2(\alpha_-)}{\alpha_-^2} + (1+\xi)^2 \frac{\sigma^2(\alpha_+)}{\alpha_+^2}} \simeq 1 \times 10^{-5}$$

Missing EW higher orders: few 10⁻⁴

- See presentation on Tuesday (Sven Heinemeyer)
 - Current status: full one-loop calculation available
 - Box EW correction : 8-9 × 10⁻⁴
 - Vertex EW correction : ~10⁻³
 - Uncertainty : few 10⁻⁴
 - Higher-order corrections computable with current techniques
 - At the level of a few 10⁻⁴
 - Uncertainty : few 10⁻⁵ This is what we need.
 - New techniques might be needed for 3-loop corrections
 - At the level of a few 10⁻⁵
 - Uncertainty : < 10⁻⁵
- **Significant precision improvement needed for all EWPO predictions**
 - Need to set up a consistent international effort now
 - To benefit from the experience of our experts
 - To train a new generation of theorists

Efficiency and acceptance: negligible

- At lowest order in QED (no ISR/FSR/IFI)
 - Any $\cos\theta$ -dependent efficiency and acceptance $\epsilon(\cos\theta)$ can be unfolded as follows

$$\frac{\mathrm{d}N^{\pm}}{\mathrm{d}\cos\theta} \propto \left\{1 + \cos^{2}\theta \mp \frac{8}{3}A_{\mathrm{FB}}^{\mu\mu}\cos\theta\right\} \times \varepsilon(\cos\theta) = \frac{N_{\pm}(\cos\theta)}{N_{\pm}(\cos\theta)} = \frac{N_{\pm}(\cos\theta) - N_{\pm}(\cos\theta)}{N_{\pm}(\cos\theta) + N_{\pm}(\cos\theta)} = \frac{4}{3}\frac{2\cos\theta}{1 + \cos^{2}\theta}A_{\mathrm{FB}}^{\mu\mu}$$

• A_{FB} is thus obtained from μ^+/μ^- asymmetry in each $\cos\theta$ bin

$$A_{\rm FB}^{\mu\mu} = \frac{3}{4} \frac{1 + \cos^2 \theta}{2\cos \theta} \times A_{\pm}(\cos \theta)$$

Effect of QED initial-state radiation (no FSR/IFI)

- ISR changes the muon angular distribution
 - Because of the longitudinal boost
 - Because of the reduction of \sqrt{s} ($\Delta A_{FB} < 0$)
- Both effect can be dealt with in case of one ISR photon

$$\cos\theta^* = \frac{\sin(\theta^+ - \theta^-)}{\sin\theta^+ + \sin\theta^-}. \quad \text{and} \quad \frac{s'}{s} = \frac{\sin\theta^+ + \sin\theta^- - |\sin(\theta^+ + \theta^-)|}{\sin\theta^+ + \sin\theta^- + |\sin(\theta^+ + \theta^-)|}$$

- Measure $A_{\pm}(s'/s, \cos\theta^*)$ in each $\cos\theta^*$ bin
 - And fit for $A_{FB}^{\mu\mu}(s'/s)$

Initial-state radiation (no FSR/IFI)

- The s'/s and $\cos\theta$ * determination is no longer exact when
 - Two ISR photons are radiated
 - The muon angular resolution of the detector is not perfect
 - The beam energy spread is not negligible (comment from Mogens Dam)
 - All generate important biasses on the measurement of A_{FB}(s'/s)

• Changes the asymmetry by up to 2% at $\sqrt{s} = 87.9$ GeV !

Initial-state radiation (no FSR/IFI)

- The s'/s and $\cos\theta$ * determination is no longer exact when
 - Two ISR photons are radiated
 - The muon angular resolution of the detector is not perfect
 - The beam energy spread is not negligible (comment from Mogens Dam)
 - All generate important biasses on the measurement of A_{FB}(s'/s)

- Changes the asymmetry by up to 2% at $\sqrt{s} = 87.9$ GeV !
 - But the absolute effect on A_{FB} is universal : it is ~identical at $\sqrt{s} = 94.3$ GeV

 $\Delta A_{FB}/A_{FB}(s_{-}) > 0$ and $\Delta A_{FB}/A_{FB}(s_{+}) < 0$

Initial-state radiation (no FSR/IFI)

Cancellation of the biasses when combining the two measurements

- Total bias on $\alpha_{QED}(m_Z^2)$ of the order of 8 × 10⁻⁶
 - And is well predictable by QED soft photon prediction: negligible uncertainty
- Note: \sqrt{s} -spread also changes the average \sqrt{s} due to non flat cross section
 - Additional bias of 8 × 10⁻⁵ on $\alpha_{QED}(m_Z^2)$: must know \sqrt{s} -spread to better than 10%

- See also Staszek Jadach's talk on Tuesday
 - Angular distribution modified with another totally asymmetric function

- Cancellation still occurs between s_ and s₊
 - But the simple trick with $A_{\pm}(\cos\theta)$ needs to be refined

- Plot from Staszek's talk
 - In this plot, A_{FB} is determined as

$$A_{\rm FB}^{\mu\mu} = \frac{\sigma_{\mu\mu}^{\rm F} - \sigma_{\mu\mu}^{\rm B}}{\sigma_{\mu\mu}^{\rm F} + \sigma_{\mu\mu}^{\rm B}},$$

- Relative effect on A_{FB}(s_±) of the order of 10% for a tight cut on s'/s
- Relative effect on the difference of the order of 0.2% [~used to determine α_{QED}(m_Z²)]
- Requires IFI to be predicted to a precision better than 1% to reach the required precision on α_{QED}(m_Z²)

• Characteristic effect similar at all \sqrt{s} : simultaneous fit may bring an elegant solution

• Once IFI is fit from the data (to be done)

$$\mathsf{N}_{\pm}(\mathbf{cos}\theta) \approx \mathsf{N}_{\mathsf{o}} \times \varepsilon(\mathbf{cos}\theta) \times \left\{ 1 + \cos^{2}\theta^{*} \pm \frac{8}{3}A_{\mathrm{FB}}(s')\cos\theta^{*} \right\} \times \left\{ 1 \pm f\left(\frac{s'}{s}\right)\log\frac{1 + \cos\theta^{*}}{1 - \cos\theta^{*}} \right\},$$

$$\mathsf{F}(\mathsf{s}'/\mathsf{s}, \ \mathbf{cos}\theta^{*}) = \mathsf{F}$$

$$A_{FB} = \frac{3}{4} \frac{1 + \cos^2 \vartheta}{2\cos \vartheta} \frac{A_{\pm} - F}{1 - A_{\pm}F} \quad \text{with} \quad A_{\pm} = \frac{N_{-}(\cos \vartheta) - N_{+}(\cos \vartheta)}{N_{-}(\cos \vartheta) + N_{+}(\cos \vartheta)}$$

- I still need to find my way (analytically or not) towards a satisfactory fit
 - And benefit from the full cancellation of the IFI bias between s₊ and s₋
- The IFI functional form can also be taken from Monte Carlo
 - In this case, it has to be predicted with a precision of a few 10^{-3}
 - → Towards a precision on α_{QED} (m_Z²) of few 10^{-5}

Conclusions

- The FCC-ee can deliver a direct measurement of $\alpha_{QED}(m_Z^2)$ to 3 × 10⁻⁵
 - + With an accuracy 4-5 times smaller than current measurements of $\Delta lpha_{had}$
 - Needed to exploit EWPO measurements at <u>ANY</u> e⁺e⁻ collider
- The FCC-ee is the only e⁺e⁻ collider able to do so (because it is circular)
 - First key breakthrough: The large integrated luminosities
 - Target luminosities with 4 IP's allow this measurement to be done in a year
 - Second key breakthrough: The ultra-precise measurement of the beam energy
 - Two orders of magnitude better than at linear colliders
 - → Still the dominant experimental systematic uncertainty at the FCC-ee
 - ➡ Note: The beam energy spread must also be measured to ~10% or better

• The only obstacle today (beyond building the collider) is THEORY

- Pure QED corrections (in particular IFI) can probably be fit from the data
 - Or will need to be predicted with a precision of a few 10^{-3}
- Electroweak corrections to A_{FB} need to be computed to higher orders
 - Today, full one-loop calculation available, uncertainty ~ few 10⁻⁴
- A consistent international effort must be setup for all EWPO predictions.