

FCC - RF concepts

FCC-RF-Working Group

S. Aull, O. Brunner, A. Butterworth, N. Schwerg, M. Therasse

With grateful appreciation to R. Calaga

FCC Week 2016

April 9 - 15 Rome

FCC-ee (-hh) layout

- Machine length = 100km
- RF power per beam = 50MW
- Beside the collider ring(s), a booster of the same size must provide beams for top-up injection to sustain the extremely high luminosity
 - same size of RF system, but lower power

Input

Machine Parameters & Timeline

Z H t FCC-hh

Design and Technology

SRF systems design issues

Beam – cavity interaction

Parameter Variation and Limits

Intersecting circles?

Preliminary Cavity Design Choices

- →It is not optimal to try to make one RF configuration cover all options
- →Selection of designs to cover FCC-ee and FCC-hh machines

"Z" machine: design considerations

High luminosity calls for short bunch length and high bunch charge

	Z	Z		
Beam energy [GeV]	4	45.6		
Beam current [mA]		1450		
Bunches / beam	30180			
Bunch spacing [ns]	7.5	2.5		
Bunch population [10 ¹¹]	1.0	0.33		
Horizontal emittance [nm] Vertical emittance [pm]	0.2	0.09		
Momentum comp. [10 ⁻⁵]	0.7	0.7		
Betatron function at IP - Horizontal [m] - Vertical [mm]	0.5 1	1 2		
Crossing angle at IP [mrad]				
Bunch length [mm] - Synchrotron radiation - Total	0.9 6.7	1.6 3.8		
Energy loss / turn [GeV]	0.03			
Total RF voltage [GV]	0.4	0.2		
RF frequency [MHz]				
Synchrotron tune Q _s	0.036	0.025		
Interaction region length L _i [mm]	0.66	0.62		
Hourglass factor H (L _i)	0.92	0.98		
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]	207	89.4		
_				

→ "High" HOM powers (dozen of kW):
Compact "highly damped" cavities

Beam pipe absorbers (KEKB) Waveguide couplers (JLAB)

→ "Medium" HOM power levels (few kW)
HOM antennas (LHC, Soleil,..)

- Favours low frequency and low number of cells: lets adopt 400 MHz and 1-cell for now
- Cryomodules ($k_{CM} \approx 10 \text{ V/pC}$): $P_{HOM} \approx 70 \text{ kW} 200 \text{kW}$ per cryomodule ($\approx 2-5 \text{MW}$ tot)

- →Optimize (& freeze) machine parameters
- →Optimize cell shape with regard to HOMs
- →Carefully design cryomodule and HOM dampers (e.g. shielded bellow, tapers, ...)
- →Damp propagating HOMs (in "external" HOM loads and in the warm sections between cryostats)

Z design compatibility

- 400MHz single cell cavities preferred for FCC-hh
- (See E. Shaposhnikova 's Presentation)

- RF power $\approx 500 700$ kW per cavity
- Single cell not efficient for high energies

"Higgs" (and t) machines

optimize acceleration efficiency

	V_tot	n_bunch	I_beam	σ	E_turnloss
FCC-hh	0.032		500		
Z	0.4 / 0.2	30180 / 91500	1450	0.9/1.6	0.03
W	0.8	5260	152	2	0.33
Н	3	780	30	2	1.67
t	10	81	6.6	2.1	7.55

- ♦ Need acceleration efficiency (3 -> 10GV) > Large RF systems: 800 2700 cells per beam
- Optimize technology choice (e. g. cryogenic losses)
 - * 400MHZ @ 10MV/m, 4.5K <-> 800MHz @ 20MV/m, 2K

(See S. Aull's Presentation)

- * Advantage of operating at 4.5K: simpler cryostat design, cheaper, more reliable, simpler cryogenic plant, minimum transverse impedance...
- Long term: Nb3Sn like components offer potential significant cryogenic cost savings
- Efficient RF power sources

(See I. Syratchev's Presentation)

CM design considerations

H and t scenarios can be optimized with 400 MHz or 800 MHz (or both)

LEP-like CM @ 400MHz (≈ 50 x12m)

ESS-like CM @ 800MHz (≈ 40 x 7m)

- Optimize cell shape with regard to accelerating mode (aim at high shunt impedance)
 - Carefully optimize number of cells per cavities
 - → beam-cavity interaction: tailor HOM spectrum to avoid strong beam harmonics (danger of resonant built up by the beam)
 - → RF power distribution
- HOM power (≈ 6 8 kW) per cryomodule
- Matched $Q_L \approx 5.10^5 (W)$, $2.10^6 (H)$, $0.6-1.10^7 (t)$
- Cost comparison (2K vs 4.5K) will help determining the best option

Staging scenarios:

two designs - common R&D

400 MHz (1 cell) x 300 RF Power \approx 0.5 - 1 MW HOM Power damping

400/800 MHz (multi-cells) x > thousands RF Power \approx few kW Cryo Losses >> MW Niobium on Copper @ 4.5 K New materials

Common R'n'D Topics (selection)

Cavity Design

High Efficiency Power Production

Fundamental Power Coupler

HOM Damping

Beam Dynamics

LLRF Control

Cavity Fabrication

New Materials

Summary & Outlook

- It is not optimal to try to make one RF configuration cover all options
 - Selection of two designs to cover FCC-ee and FCC-hh machines
 - Analysis highlighted some limitations -> should be examined closely to see if they can be improved by further R&D
- Common areas of R&D/challenges identified
 - Beam dynamics limitations
 - Cavity design
 - Cavity materials
 - Power couplers
 - RF power sources

Scenarios optimization

- Detailed RF optimization would need some stability in the machine parameters
- ❖ Beam-cavity interaction study -> danger of resonant built up by the beam + electro-acoustic instability
 - Max n_cell per cavity?
 - Frequency choice?
- Cost estimates of different options -> Advantage of operating at 4.5K

End

Discussion and Comments —