Contribution ID: 181 Type: Oral

High-precision alpha_s from W decays at FCC-ee

The hadronic branching ratio of the W boson BR_{had} , computed today at next-to-next-to-leading order (NNLO) accuracy, can be used to determine the QCD coupling α_s using the experimental data to be collected in $e^+e^- \to W^+W^-$ processes at the FCC-ee. By exploiting the huge data sample of 5×10^8 W bosons (a thousand times more than the 5×10^5 W's collected at LEP), the statistical uncertainty on BR_{had} can be reduced to around 0.005\%. By combining the measurement of BR_{had} and $(1-BR_{lep})$, alpha_s can be extracted with a state-of-the-art experimental uncertainty of order 0.2\%. The associated parametric and theoretical uncertainties of such an alpha_s determination will be also discussed.

Primary author: D'ENTERRIA, David (CERN)

Presenter: D'ENTERRIA, David (CERN)

Track Classification: Experiments and Detectors