

The Business of Science®

Development of Nb₃Sn (and Bi-2212) strands in preparation for the FCC

J.A. Parrell, M.B. Field, H. Miao, A. Wu, K. Damborsky, Y. Huang

Oxford Superconducting Technology, Carteret, NJ 07008 USA

Acknowledgements

- The work summarized in this talk reflects more than 15 years of continuous financial and intellectual support
 - U.S. DOE High Energy Physics
 - European Organization for Nuclear Research (CERN)
 - Lawrence Berkeley National Laboratory
 - Fermi National Accelerator Laboratory
 - Brookhaven National Laboratory
 - ASC Florida State University / NHMFL
- Thank you for your continued support and collaborations

- Nb₃Sn FCC conductor: a significant challenge!
 - Incremental improvement opportunities if D_{eff} ~60 μm
 - Renewed need for more fundamental Nb₃Sn R&D
- Properties of present Nb₃Sn accelerator strand
- Bi-2212 development progress
- Nb₃Sn is not Nb-Ti: Review of conductor cost drivers
- Bridging technical and industrial gaps until the FCC

Nb₃Sn is an engineering material

© Oxford Instruments 2016

0.8mm Non-Copper Magnetization Hysteresis Loss (mJ/cm³)

Faster Ramping Magnets Decreasing Flux Jumps

From materials science to actual strands

Strand cross sectional area optimization

More Nb = Less Cu

More Nb (+Sn) = *More* Nb₃Sn

Less Cu + More Sn = *Better* Nb₃Sn

© Oxford Instruments 2016

Present strands: J_c already nearly optimized(?)

Target FCC Nb₃Sn strand performance

The Business of Science®

Ballarino and Bottura, *IEEE Trans Appl. Supercond.* **25**, (2015).

Property	Units	Target	RRP®	Single barrier
Strand diameter	(mm)	0.5 - 1.0 mm		
J _c (4.2 K, 16 T)	(A/mm ²)	≥ 1500	? Need ↑ 25%	×
Filament size (D_{eff})	(μ m)	≤ 20	? Need ↓ 50%	
RRR		≥ 150		
Unit Length	(km)	\geq 5 km	? 1 billet = 9 km	າ @ 0.85 mm
Cost (@ 12 T, 4.2 K)	€/kA∙m	1/3 of today's of	costs of approxima	ately €10/kA⋅m

- Only distributed barrier strands come close to target J_c
- Internal tin billets are not extruded \rightarrow limited billet mass, maximum length

Focus on distributed barrier, RRP[®] strand

Reducing the effective filament diameter seems to be the largest challenge

- Means to keep RRR high:
 - Use less Sn
 - Use lower HT temperatures
- \rightarrow Both result in lower J_c

High J_c, RRR when D_{eff} ~50-60 µm

Reducing manufacturing variation might get us close to the target J_c performance

High RRR, J_c maintained after cabling

OXFORD INSTRUMENTS

The Business of Science®

RRR decreases >10%

rolling, but remains >150

 I_c values are maintained through >15% rolling

Comparison of Nb-Ti and Nb₃Sn production scale and cost drivers

The Business of Science®

Parameter	Nb-Ti	Nb₃Sn	Cost challenge
Nb content	18 wt%	26 wt%	Nb is most expensive raw material (Cu:SC 1.3 assumed)
Strand billet size	400 kg	40 kg	Limited Nb ₃ Sn piece lengths
Billet stacking steps	2	3	↑ Labor and time costs, also yield loss at each step
Ongoing demand 1 (infra- structure)	1000's tons per year	10's tons per year	 LHC was a fraction of annual Nb-Ti market
			• FCC (6000 tons/5 yrs) would be >50x base Nb ₃ Sn market

Nb₃Sn market is different from Nb-Ti; FCC demand would dominate

Projecting future costs Nb₃Sn strand

The Business of Science®

- Potential cost reduction contributions:
 - + Raw materials: ? Market driven
 - + Incremental Conductor Improvement: ~10% J_c gain
 - + Efficiency gains from scale up of billet sizes
 - + Continued incremental piece length gains

Together these may reduce $kA-m \cos by \sim \frac{1}{3}$

To cut the /kA-m by 2/3 requires a more significant J_c gain

 Layer J_c increase could yield largest cost benefit- provided conductor fabrication cost is not increased cost elsewhere

Progress with Bi-2212

- Increasingly consistent properties billet to billet
- J_E (16 T) now about $\frac{2}{3}$ that of Nb₃Sn strands

Cost: Opportunity in \$/kA-m, Not Materials

- Silver
 - No known alternatives, metals market dictates price
 - 2212 fill factor limited to ~30% (already achieved)
- Powders
 - Significant overhead costs dominate today
 - Modest annual volumes do not drive cost reductions
- Production Scale Comparisons:

	Bi-2212	Internal Tin (w/o ITER)	Internal Tin (For ITER)	Nb-Ti (MRI)
Approximate Billet Mass (kg)	10	30	60	400
Approximate Annual Market (tons)	0.01	10's	100's	1000's

Summary

- The Business of Science®
- $(J_c RRR D_{eff})$ of today's Nb₃Sn is well optimized
- FCC requirements stretch beyond the state of the art
 - Target J_c & RRR are "close" for D_{eff} ~60 μm
 - Basic R&D again required for Nb₃Sn layer J_c breakthrough
 - HEP-specific development requires sustained HEP "pull"
- And then, there's cost...
 - Scale up can help reduce cost, if demand is consistent
 - Nb₃Sn is not Nb-Ti; FCC would <u>be</u> the market
- Opportunities
 - R&D today supports conductor in production 2025-2030
 - Layer J_c breakthrough (for free!) may solve cost challenge