Beam dynamics: RF requirements for the FCC-hh

E. Shaposhnikova 12.04.2016

Thanks: R. Calaga, D. Schulte, F. Zimmermann

Main input ring & beam parameters

• Ring

- Circumference: ~ 100 km
- Energy: (0.45, 1.7, 3.3 TeV) \rightarrow 50 TeV
- Transition gamma: γ_t =110 (120 previously)
- Energy loss per turn @50 TeV: U_0 =4.6 MeV
- Beam
 - Bunch spacing(s): 25 ns (5ns)
 - Bunch length during physics: 8 cm ($\tau_{4\sigma}$ = 1.07 ns)
 - Bunch intensity: 1.0x10¹¹
 - Large longitudinal emittance on the flat bottom energy (for transverse beam stability)

Output RF & longitudinal beam parameters

- Optimum RF frequency
- Harmonic number (& length of the FCC ring)
- Minimum RF voltage
 - @50 TeV
 - during ramp (depends on ramp rate)
 - flat bottom (depends on energy and emittance)
- Long. emittance & bunch length during cycle
- RF requirements for injectors

RF frequency

- 5 ns spacing → n x 200 MHz → 200, 400, 800,... MHz with bucket length = 5, 2.5, 1.25 ns
- Bucket length in the presence of synchrotron radiation is reduced by $\Delta \phi \sim 2(\pi U_0/V)^{1/2}$ (for $U_0 << V$)
- Bunch length of 8 cm ($\tau_{4\sigma}$ = 1.07 ns) \rightarrow 200 or 400 MHz RF

RF harmonic number and ring size

- f_{rf} =400.79 MHz and bunch spacings of 5 ns, 25 ns, (125 ns ?) h_{LHC} = 35640 = 2x4x5x9x9x11 h_{SPS} = 4620x2= 2x3x4x5x7x11 For example h_{FHC} = 133650 = 2x3x5x5x9x9x11 \rightarrow 100.2 km or h_{FHC} = 132930 = 2x5x7x9x211 \rightarrow 99.4 km
- Synchronization between different rings: SPS-LHC: h_{SPS}/h_{LHC}=7/27 => 7 T_{rev}(LHC) or 27 T_{rev}(SPS)

Example for 100.2 km ring

LHC-FHC: $h_{LHC}/h_{FHC} = 4/(3x5) = 4 T_{rev}(FCC)$ or 15 $T_{rev}(LHC)$ SPS-FHC: $h_{SPS}/h_{FHC} = 4x7/(9x25) => 28 T_{rev}(FCC)$ or 25x9 $T_{rev}(SPS)$! OK for 125 ns spacing (FHeC): 2x5x5 ...

Criteria used to define required RF voltage

• Filling of the RF bucket:

→ maximum momentum filling factor of 0.9 during ramp and of 0.8 in physics (LHC experience)

• Longitudinal emittance on the flat top:

→ based on loss of Landau damping threshold for N=1x10¹¹ and longitudinal effective impedance ImZ/n= 0.2 Ohm(for LHC calculated and measured ImZ/n = 0.1 Ohm).

Longitudinal emittance on the flat bottom:
 → scaled ~ E^{1/2} from the top value (longitudinal beam stability)

 \rightarrow maximized for transverse beam stability

400 MHz RF @ 50 teV

 \rightarrow Minimum voltage of 16 MV

200 MHz RF @ 50 TeV

 \rightarrow Possible bunch lengths > 1.4 ns

200 MHz RF @ 50 TeV

Loss of Landau damping

Filling factor in momentum

 \rightarrow Possible bunch lengths > 1.4 ns

Output from analysis at 50 TeV

RF parameters:

- f_{rf}= 400.79 MHz
- $h = 132930 \rightarrow C \sim 99.4 \text{ km}$ or ?

Beam parameters:

- Min. emittance @50 TeV ~ 7 eVs (16 MV) 🖁
- Controlled emittance blow-up is required during physics due to bunch length reduction: SR damping time 0.54 h

$$N_{th} \simeq \epsilon^{2.5} = \epsilon_0 e^{-2.5t/0.54}$$

 \rightarrow For $\varepsilon_0 = 10$ eVs stability is lost in 3 min!

 \rightarrow Better with higher voltage/emittance Plus 800 MHz RF system (see talk X. Buffat)?

Emittance vs bunch length Nb=1.0E11 14 √t=120 12

Acceleration ramps with 400 MHz RF

Example

Magnetic ramp composed of

- parabolic part(0.1)
- linear part (0.8)
- parabolic part (0.1)

Injection at 3.3 TeV

\rightarrow Cycle can be optimised for the SR energy loss

Voltage programs for constant filling factor in momentum and controlled emittance blow-up

→ Voltage during ramp depends on acceleration time (magnetic ramp) and controlled emittance blow-up

Other considerations

Assumed impedance budget ImZ/n=0.2 Ohm \rightarrow additional margin \rightarrow Voltage during ramp can be reduced for smaller emittance blow-up, but then bunch length < **1ns** – issue for beam induced heating, transverse stability, ...?

Various injection energies and injectors

LHC at 3.3 TeV: longitudinal emittance of 4.0 eVs with 16 MV (filling factor qp= 0.9) with bunch length of 1.78 ns (4sigma).
 Similar (matched) parameters in the ECC with 16 MV

 \rightarrow Similar (matched) parameters in the FCC with 16 MV.

- HEB at 3.3 TeV: 400 MHz RF system similar to LHC with V_{max}=20 MV accelerates from 0.45 to 3.3 TeV in 2 min. 60 MV are required for 0.5 min ramp, then larger emittances are possible for FCC injection.
- Injection at 0.45 TeV from present SPS: for 1.5 eVs in 15 MV in FCC (4σ_t =1.8 ns) → significantly more RF voltage than available in the SPS (even after RF upgrade) is needed
- Injection at 1.5 TeV (new ring in the SPS tunnel): voltage strongly depends on transition gamma (optics)

Voltage programs for different emittances

RF power requirements

- RF power requirements depend on
 - total voltage V and power loss (SR)
 - acceleration rate
 - longitudinal emittance (for stability)
 - number of RF cavities (voltage/cavity: 1 2 MV)
 coupling Q_i
- Maximum RF power is required at the end of the ramp (bucket + acceleration +SR) → magnetic ramp can be optimised
- We assume to be below 500 kW/cavity with 12 MW for both beams during physics

The 5 ns beam for the FCC-hh

- The present CERN accelerator complex (PSB-PS-SPS) produces the 5 ns beam in a quite "dirty" way:
 - PS: beam is debunched and modulated at 200 MHz
 - MTE or CTE extraction from PS at 14 GeV/c
 - Beam from the extraction-kicker gap is lost in the ring
 - No bunch-to-bucket transfer
- Studies performed in the past suggest a clean and flexible 5 ns beam production with SPL (Superconducting Proton Linac) replacing the existing PS Booster

Summary

- For the FCC-hh an optimum RF frequency to achieve required bunch length and stability at 50 TeV is 400 MHz
- 32 MV at 400 MHz are sufficient to accelerate in 30 min bunches with injected emittance of 4.0 eVs at 3.3 TeV and controlled emittance blow-up to 7.0 eVs during ramp with some margin for beam stability in physics
- Need for RF synchronisation affects the ring size
- The 5 ns bunch spacing needs a new injector chain
- Bunches with large emittances (TMCI) & bunch length < 1.8 ns are difficult to provide using the SPS ring → 200 MHz RF system (in addition to the 400 MHz) in FCC would help

200 MHz voltage required on the flat top in different SPS options & optics

Energy GeV	γ _t /optics	emittance eVs	bunch length ns	voltage MV
Present SPS				
450	18.0/Q20	1.5	1.8	52.7
450	22.8/Q26	1.5	1.8	32.8
New ring				
1500	18.0	2.5	1.8	44.0
1500	22.8	2.5	1.8	27.4
1500	30.0	2.5	1.8	15.8

 \Rightarrow In all cases much smaller 200 MHz voltage is required for beam acceleration: < 10 MV

- \Rightarrow Much smaller emittance is sufficient for beam stability with 1.1x10¹¹/b: ~ 0.5 eVs
- ⇒ Extra voltage is needed only on flat top for beam transfer into 400 MHz RF system of the FCC => additional 200 MHz RF system in the FCC

HEB cycles and beam parameters

Bunch length

2.25 400 MHz RF system 70 400 MHz RF system V for qp=0.9 V for qp=0.9 2 60 tacc = 0.5 min1.75 50 1.5 ε (eVs) €40 ≥40 > 1.25 tacc = 2.0 min 1.0 min 1 30 0.5 min 0.75 20 2.0 min 0.5 10 0.5 s 0.25 0 0 2.5 3.5 0.5 1 1.5 2 3 0.5 1.5 2.5 3 2 1 Ps (TeV/C) Ps (TeV/C)

Voltage

=> RF system comparable to the present LHC for 2 min acceleration ramp => 30 resonators with 300 kW power for 0.5 min acceleration ramp