

Impact of high design pressures of the cryogenic transfer lines on heat inleaks

Pawel Duda, Jaroslaw Polinski, Maciej Chorowski, Lauren Tavian* * CERN, Geneva, Switzerland

FCC Week, 14 April 2016 Rome

- 1. Introduction FCC cryogenic system
- 2. Design of the transfer line with stainless steel process pipes
- 3. Design of the transfer line with invar process pipes
- 4. Comparison on the heat fluxes and failure rates
- 5. Summary

FCC Cryogenic system

FCC Cryogenic system

Specification of the process pipes of tunnel distribution line of FCC

(He I)
B

Header	Function	DN mm	Nom. T K	Nom. P _N bar	Design P _D bar	Test P _T bar
Header B	Pumping line	250	4	0.5	4	6
Header C	SHe supply	80	4.6	3	20	29
Header D	Quench line and current lead He supply	200	40	1.3	20	29
Header E	Thermal shield and beam screen He supply	240	40	20 (50)	20 (50)	29 (71.5)
Header F	Thermal shield and beam screen He return	240	60	15 (45)	20 (50)	29 (71.5)
Vacuum jacket	Insulation vaccum enclosure	850	300	0	0 -1.05	1.5

1. Introduction - FCC cryogenic system

2. Design of the transfer line with stainless steel process pipes

- 3. Design of the transfer line with invar process pipes
- 4. Comparison on the heat fluxes and failure rates
- 5. Summary

Scheme of the transfer line with stainless steel process pipes

Transfer line compensation and internal support system

Determination of the distance between supports

 $\begin{array}{l} L_1 = 3 \cdot DN - \text{for axial expansion joints} \\ L_2 = 0.5 \cdot L_F \\ L_F \text{- depends on the accepted deflection and the} \end{array}$

risk of pipe buckling

The forces from pressure and thermal shrinkage

 $F_{NP}=F_{P}-F_{TS}$ – for nominal parameters

 $F_{TS} = \Delta L \cdot c_{\delta}$ – depends on nominal temperature

 $F_P = A \cdot P$ - the highest value for the pressure test

Nominal dia-	Nominal axial	Туре	Order standard	No. version	Overall length	Weight	approx.	Weld	l ends		Bellows		Nominal r absor	novement ption ¹⁾	,	Adjusting force ra	te
meter	movement					without	with	outside	wall	outside	corrugated	effective	for 1000 loa	iding cycles			
	absorption	ARN 25	inner sleeve	inner sleeve		sleeve	sleeve	diameter	unickness	diameter	length	section	angular ¹⁾	lateral ¹⁾	axial	angular	lateral
DN	2δ _N	-	-	-	Lo	G	G	D	s	Da	lbg	Α	2α _N	2λ _N	ca	Ca	cλ
-	mm	-	-	-	mm	kg	kg	mm	mm	mm	mm	cm ²	degrees	mm	N/mm	Nm/degrees	N/mm
50	17	.0050.017.0	417621	417650	210	1.2	1.4	60.3	4	90	50	46.6	22	3.5	321	4.2	1113
50	32	.0050.032.0	417622	417651	270	1.8	2	60.3	4	91	110	47.2	33	15	199	2.6	144
65	21	.0065.021.0	417623	417652	215	1.8	2	76.1	4	109	55	70.1	23	4.1	272	5.3	1182
65	40	.0065.040.0	417624	417653	292	3.2	3.6	76.1	4	111	132	71.6	33	18	218	4.3	166
80	23	.0080.023.0	417625	417654	220	2.3	2.6	88.9	4	123	60	90.8	21	4.1	329	8.3	1555
80	42	.0080.042.0	417626	417655	290	3.6	4	88.9	4	125	130	92.5	32	17	222	5.7	227
100	23	.0100.023.0	417627	417656	212	2.8	3.1	114.3	4	151	52	140	18	3	340	13	3302
100	48	.0100.048.0	417629	417657	286	4.6	5.2	114.3	4	152	126	141	30	15	218	8.5	361
125	26	.0125.026.0	417630	417658	240	3.9	4.4	139.7	4	174	64	187	18	3.6	450	23	3864
125	52	.0125.052.0	417631	417659	304	5.3	6.1	139.7	4	174	128	187	29	14	225	12	483
150	29	.0150.029.0	417632	417660	240	4.9	5.5	168.3	4.5	205	64	267	17	3.4	440	33	5410
150	58	.0150.058.0	417633	417661	304	6.8	7.7	168.3	4.5	205	128	267	27	13	220	16	676
200	26	.0200.026.0	417635	417662	252	8.5	9.4	219.1	6.3	261	72	443	12	2.6	855	105	13759
200	52	.0200.052.0	417636	417663	324	11.3	12.6	219.1	6.3	261	144	443	20	11	428	53	1722
200	71	.0200.071.0	417637	417664	378	15.2	17.1	219.1	6.3	262	198	445	23	19	376	46	802
250	24	.0250.024.0	417638	417665	240	11.5	12.5	273	7.1	320	60	679	8.7	1.6	1298	245	46135
250	48	.0250.048.0	417639	417666	300	15.1	16.5	273	7.1	320	120	679	16	6.4	649	122	5762
250	79	.0250.079.0	417640	417667	380	19.8	22	273	7.1	320	200	679	21	18	390	74	1245

Transfer line compensation and internal support system

Increases the number of sliding supports

Determination of the distance between supports

 $L_1 = 3 \cdot DN$ – for axial expansion joints $L_2 = 0.5 \cdot L_F$ L_F - depends on the accepted deflection and the risk of pipe buckling

The forces from pressure and thermal shrinkage

 $F_{NP}=F_{P}-F_{TS}$ – for nominal parameters

 $F_{TS} = \Delta L \cdot c_{\delta}$ – depends on nominal temperature

 $F_P = A \cdot P$ - the highest value for the pressure test

The most critical - determines the / dimensions of the strong fixed support

Nominal	Nominal axial	Туре	Order	No.	Overall length	Weight	approx.	Weld	ends		Bellows		Nominal r	novement	,	djusting force ra	ite
meter	movement				longui	without	with	outside	wall	outside	corrugated	effective	for 1000 loa	iding cycles			
	absorption	ARN 25	without inner sleeve	with inner sleeve		inner sleeve	sleeve	diameter	thickness	diameter	length	cross- section	angular ¹⁾	lateral ¹⁾	axial	angular	lateral
DN	2 δ _N	-	-	-	Lo	G	G	D	s	Da	lbg	Α	2 α _N	2λ _N	ca	Ca	c _k
-	mm	-	-	-	mm	kg	kg	mm	mm	mm	mm	cm ²	degrees	mm	N/mm	Nm/degrees	N/mm
50	17	.0050.017.0	417621	417650	210	1.2	1.4	60.3	4	90	50	46.6	22	3.5	321	4.2	1113
50	32	.0050.032.0	417622	417651	270	1.8	2	60.3	4	91	110	47.2	33	15	199	2.6	144
65	21	.0065.021.0	417623	417652	215	1.8	2	76.1	4	109	55	70.1	23	4.1	272	5.3	1182
65	40	.0065.040.0	417624	417653	292	3.2	3.6	76.1	4	111	132	71.6	33	18	218	4.3	166
80	23	.0080.023.0	417625	417654	220	2.3	2.6	88.9	4	123	60	90.8	21	4.1	329	8.3	1555
80	42	.0080.042.0	417626	417655	290	3.6	4	88.9	4	125	130	92.5	32	17	222	5.7	227
100	23	.0100.023.0	417627	417656	212	2.8	3.1	114.3	4	151	52	140	18	3	340	13	3302
100	48	.0100.048.0	417629	417657	286	4.6	5.2	114.3	4	152	126	141	30	15	218	8.5	361
125	26	.0125.026.0	417630	417658	240	3.9	4.4	139.7	4	174	64	187	18	3.6	450	23	3864
125	52	.0125.052.0	417631	417659	304	5.3	6.1	139.7	4	174	128	187	29	14	225	12	483
150	29	.0150.029.0	417632	417660	240	4.9	5.5	168.3	4.5	205	64	267	17	3.4	440	33	5410
150	58	.0150.058.0	417633	417661	304	6.8	7.7	168.3	4.5	205	128	267	27	13	220	16	676
200	26	.0200.026.0	417635	417662	252	8.5	9.4	219.1	6.3	261	72	443	12	2.6	855	105	13759
200	52	.0200.052.0	417636	417663	324	11.3	12.6	219.1	6.3	261	144	443	20	11	428	53	1722
200	71	.0200.071.0	417637	417664	378	15.2	17.1	219.1	6.3	262	198	445	23	19	376	46	802
250	24	.0250.024.0	417638	417665	240	11.5	12.5	273	7.1	320	60	679	8.7	1.6	1298	245	46135
250	48	.0250.048.0	417639	417666	300	15.1	16.5	273	7.1	320	120	679	16	6.4	649	122	5762
250	79	.0250.079.0	417640	417667	380	19.8	22	273	7.1	320	200	679	21	18	390	74	1245

Mechanical loads on the vacuum barriers

Heat transfer thought the internal supports

- 1. Introduction FCC cryogenic system
- 2. Design of the transfer line with stainless steel process pipes
- 3. Design of the transfer line with invar process pipes
- 4. Comparison on the heat fluxes and failure rates
- 5. Summary

INVAR vs. stainless steel - comparison of material properties

Mechanical loads on the vacuum barriers for INVAR process pipes

The forces acting of the supports slightly dependent on the preassure Σ 501 kN

Heat transfer thought the internal supports for INVAR process pipes

- 1. Introduction FCC cryogenic system
- 2. Design of the transfer line with stainless steel process pipes
- 3. Design of the transfer line with invar process pipes
- 4. Comparison on the heat fluxes and failure rates
- 5. Summary

Comparison of the supports system and heat fluxes

	Number of VB	Number of WFS	Number of SS	Number of SSRS	Number of welds	Number of bellows
Stainless steel	2	3	12	20	80	20
INVAR	2	0	11	20	25	0

	т	Q _{STELL} 20bar	Q _{STELL} 50bar	Q _{INV}
	К	W	W	W
DN80	4.6	4.6	4.6	4.0
DN200	40	3.2	3.7	2.8
DN240 F	40	3.5	4.9	3.0
DN240 R	60	146	158	110
DN250	4	6.8	7.4	5.0

Comparison of cumulative failure rates

Probabilities of defect occurrence (failure rates) of the most common process pipes defects

Stainl	ess steel	INVAR				
Defect	Failure rate	Ref	Defect	Failure rate		
FR ₁ Cold weld rupture	2.53·10 ⁻⁷ m ⁻¹ ·year ⁻¹	[1]	FR ₁ Cold weld rupture	5.06·10 ⁻⁷ m ⁻¹ ·year ⁻¹		
FR ₂ Cold pipe leakage	4.61·10 ⁻⁶ m ⁻¹ ·year ⁻¹	[2]	FR ₂ Cold pipe leakage	4.61.10 ⁻⁶ m ⁻¹ .year ⁻¹		
FR ₃ Cold pipe rupture	4.54·10 ⁻⁷ m ⁻¹ ·year ⁻¹	[2]	FR ₃ Cold pipe rupture	4.54.10 ⁻⁷ m ⁻¹ .year ⁻¹		
FR ₄ Cold bellows rupture	8.76·10 ⁻⁵ year ⁻¹	[3]				

Calculation of cumulative failure rate CFR

$CFR_1 = FR_1 \cdot L_W$	L_w - length of welds
$CFR_2 = FR_2 \cdot L_P$	L _w - length of pipe
$CFR_3 = FR_3 \cdot L_P$	
$CFR_4 = FR_4 \cdot n$	n - the number of bellows

2. Failure Frequency Guidance. Process Equipment Leak Frequency Data for Use in QRA. http://www.dnv.com/services/software/products/phast_safeti/leak_frequency_guidance.asp

^{1.} Cadwallader L.C.. Cryogenic System Operating Review for Fusion Application. Idaho National Engineering Laboratory. USA. 1992

^{3.} Cadwallader L. Vacuum Bellows. Vacuum Piping. Cryogenic Break and Copper Joint Failure Rate Estimates for ITER Design Use. Idaho National Laboratory. USA. 2010

Comparison of cumulative failure rates

Calculation of cumulative failure rate for stainless steel

	Circuit of pipe	Length of pipe	Number of welds	Length of welds	Number of bellows	CFR ₁	CFR ₂	CFR ₃	CFR_4	CFR
	m	m	-	m	-	1/yer	1/yer	1/yer	1/yer	1/yer
DN80	0.279	50	16	14.0	4.0	2.3E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN200	0.688	50	16	34.4	4.0	5.6E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN240F	0.804	50	16	40.2	4.0	6.5E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN240R	0.804	50	16	40.2	4.0	6.5E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04
DN250	0.858	50	16	42.9	4.0	6.9E-06	2.3E-04	2.3E-05	3.5E-04	6.1E-04

Calculation of cumulative failure rate for INVAR process pipes **2**

Σ 3.0E-3 1/yer

	Circuit of pipe	Length of pipe	Number of welds	Length of welds	CFR ₁	CFR ₂	CFR ₃	CFR
	m	m	-	m	1/yer	1/yer	1/yer	1/yer
DN80	0.279	50	5	1.40	7.1E-07	2.3E-04	2.3E-05	2.5E-04
DN200	0.688	50	5	3.44	1.7E-06	2.3E-04	2.3E-05	2.5E-04
DN240F	0.804	50	5	4.02	2.0E-06	2.3E-04	2.3E-05	2.6E-04
DN240R	0.804	50	5	4.02	2.0E-06	2.3E-04	2.3E-05	2.6E-04
DN250	0.858	50	5	4.29	2.2E-06	2.3E-04	2.3E-05	2.6E-04

- 1. Introduction FCC cryogenic system
- 2. Design of the transfer line with stainless steel process pipes
- 3. Design of the transfer line with invar process pipes
- 4. Comparison on the heat fluxes and failure rates

5. Summary

Summary

INVAR	Stainless steel
 Less types and numbers of supports Lower heat fluxes No compensation bellows Lower numbers of welds Lower forces on the vacuum barriers Lower probability of failure 	 Conventional design A well-known method of welding Pipes are commonly available

Using of invar process pipes seems to be very attractive alternative for FCC

Acknowledgment

The analysis was realized within the CERN-WrUT agreement FCC-GOV-CC-0036