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A Baseline for the FCC-he
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Table 1: Baseline parameters of future electron-proton collider configurations based on the ERL
electron linac.

parameter [unit] LHeC CDR | ep at HL-LHC | ep at HE-LHC | FCC-he
E, [TeV] 7 7 15 50
E, [GeV] 60 60 60 60
/5 [TeV] 1.3 1.3 1.9 3.5
bunch spacing [ns] 25 25 25 25
protons per bunch [10] 1.7 2.2 2.2 1
€p [pm] 3.7 2 2 2.2
electrons per bunch [10°] 1 2.3 2.3 2.3
electron current [mA] 6.4 15 15 15
IP beta function 35 [cm] 10 7 10 15
hourglass factor 0.9 0.9 0.9 0.9
pinch factor 1.3 1.3 1.3 1.3
luminosity [10%3cm=2s71] 1.3 10.1 15.1 9.2

4.3.2016 - work in progress Study value of dedicated operation O(103>cm2s1), also eA



Gluons and Quarks 1989 > 2015
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Parton-Parton “Luminosities”
Gluon-Gluon, luminosity
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A remark on gluon saturation

xg is defined via theory, not directly observable: HERA has discovered rise towards low x
Non-linear gg interactions are expected/predicted to exist (BFKL and GLR)
The only reliable measurement of xg at HERA at x <0.1 came from dF2/dInQ2

It shows a huge variation (in DGLAP) of xg(x,Q2) also with Q2:
In particular xg is valence like at Q2 ~ 1 GeV2 - ~ZERO at small x

There thus are two reasons to require Q2 >~ 10 GeV2 in the search for saturation:

- The gluon density has to be large

- The strong coupling has to be small (<<1) for npQCD effects to not interfere
Searches for gluon saturation require energies in excess of those at HERA, not smaller

The in my view only hope to see that is to confront F2 (ep) with FL (ep) data.

The direct extractions of xg in ep and eA THEN could reveal an amplification in eA..



Fluctuations of the Gluon Field - Instantons ?

The Standard Model of particle physics contains certain anomalous processes induced by in-
stantons which violate the conservation of baryon and lepton number (B + L) in the case of
electroweak interactions and chirality in the case of strong interactions [1.2]. In quantum chro-
modynamics (QCD), the theory of strong interactions, instantons are non-perturbative fluctua-
tions of the gluon field. They can be interpreted as tunnelling transitions between topologically
different vacua. Deep-inelastic scattering (DIS) offers a unique opportunity [3] to discover a
class of hard processes induced by QCD instantons.

NEW:
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Odderon

Here we will be concerned with exclusive diffractive ep scattering processes in which the
diffractively produced system carries positive charge parity C' = +1. The real or virtual
photon emitted by the electron carries negative C' parity and its transformation into a
diffractive final state system of positive C' parity hence requires the ¢-channel exchange
of an object of negative C parity. Pomeron exchange thus cannot contribute to this
process. It can only be mediated by the exchange of an Odderon, of a reggeon, or of
a photon The cleanest dlﬁractlve process 1nvolv1ng Odderon exchange is the exclusive

itive charge paritv. The mesons with
the suitable quantum numbers are pseudoscalar and tensor mesons. For the case of

e(k) R e (k") C.Ewerz
hep-ph/0306137

N (%)
H1

Figure 1: Diagram for the process ep — em®N*: the proton is excited into an (I=1/2)-isobar .
while a high energy single 7° is produced by photon-Odderon fusion. d rX IV: O 20 607 3

Three gluon state of parity C=-1. A small modification to Pomeron exchange/rapidity gaps..



Gluon at High x and Universality.?
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HERA and ABM gluons are much steeper at large x than those of MMHT,CT,NNPDF
- Can we trust factorisation, how do we test it
Gluon at large x become very small and are hugely uncertain. But M,2=sxx, ..



PDF sets and their assumptions
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Gluon at High x ?

A QCD problem by itself and a key question for searches as luminosity increases ...

Gluon distribution at Q%= 1.9 GeV?
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Understanding the High x = Large Mass region

Gluino Pair Production PDF Uncertainty
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Large Bjorken x
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Very High Mass Dell Yan 13 TeV - o(PDF)/o(CT14)
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Ratio

Valence quarks

up

up valence distribution at Q2 = 1.9 GeV2
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Remarks on Precision Higgs Physics in ep

The Higgs is produced in ep predominantly via WW-> H in ep—~> nuHX
The cross section at the LHeC is ~ 200fb, i.e. very similar to that of Z*>ZH in ee

With 1ab-1 integrated luminosity from 10734 one reaches 1% precision on bb
and 7% on cc and corresponding numbers on other channels still to be studied.
These LHeC numbers will be better at HE-LHC and FCC-eh (1%—>0.4%—>0.3% for bb)

At the FCC-eh the cross section is almost 1pb. Therefore, statistically, FCC-ee, with
4 10734 luminosity at ZH and FCC-eh with 10734 luminosity are about comparable,
subject also to the running times: ee at ZH plans 3 years, ep with pp plans O(10).

Both ee and ep thus provide high precision measurements on Higgs, much
complementary wrt each other AND to pp: for example
- ee uses mostly Z-> ZH, eh uses mostly WW—> H
- ee provides measurement of the Higgs boson width (to be studied in ZZ—> H at ep)
- ep provides N”3LO PDFs as are crucial for understanding the gg—>H production
it also provides prediction of Higgs mass with 100 MeV error (cf top mass and
cross section physics)

Specifically: LHeC and HL-LHC are an exciting couple for precision Higgs physics at LHC




HIGGS PHYSICS AT THE LHEC

SUMMARY
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Y.-L. Tang et al,,
arXiV: 1508.01095

Invisible Higgs@LHeC > ricbyc znane

relating the Higgs and the ‘dark’ sector

Br(h — ET)
HL-LHC @ 3 ab™! [arXiv:1411. 7699]

(o) (o)
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Uta Klein, FCC-eh @ 95% C.L. and 100 fb!




top quark electroweak interactions

precise measurement of couplings between SM bosons and fermions sensitive test of new physics (search
for deviations) : top quark expected to be most sensitive to BSM physics, due to large mass

-
.

* high precision measurements of Vtb and .

direct measurement of top quark charge and
search for anomalous Wtb couplings

search for anomalous ttbary couplings (eg.

EDM, MDM)
q
q/
7
‘ T
« measurement of top isospin and search for . . .
anomalous ttbarZ couplings (eg. EDM, + sensitive search for FCNC couplings will
MDM) constrain BSM models that predict FCNC

(eg. SUSY, little Higgs, technicolour)
C. Gwenlan, PDFs, QCD and BSM at the LHeC 18



Initial ep Top Results
Vip

CMS t-ch, 8 TeV, 19.7 b, JHEPOS [2014) 090 - - F C N C
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Remarks on Lepto-Quarks

Model  Fermion Charge BR(LQ — e~q) Squark
number F Q 3 Coupling  type
Sk 2 -1/3 1/2 epu vd  dg
Sk 2 —-1/3 1 e Rl
S. 2 —-4/3 1 e pd
Sty 0 -5/3 1 el
-2/3 0 Vi
Sfh, 0 -5/3 1 egil
-2/3 1 end
Si /2 0 -2/3 1 end Ty
+1/3 0 vd  d,
S, 2 —-4/3 1 erd
-1/3 1/2 eru vd
+2/3 0 v
VL 0 -2/3 1/2 end vi
VR 0 —-2/3 1 erd
V. 0 -5/3 1 Rl
"']{,:2 2 —4/3 1 erd
-1/3 0 vd
Vi 2 —4/3 1 € pd
-1/3 1 el
Vise 2 -1/3 1 e
+2/3 0 v
Vi 0 -5/3 1 eLil
—2/3 1/2 erd vi
+1/3 0 vd

Buchmueller Rueckl Wyler Classification

LQs are produced in s channel eq fusion
DIS is ideal for LQ spectroscopy

The huge energy in pp implies that
LQs are more likely discovered in pp:

LHC limits are near sqrt(s) of LHeC
FCC-ep when operating in parallel with
FCC-pp has strong discovery potential

up to its maximum energy of 3.5 TeV

—> The choice of E_ is much dictated by
new physics (also Higgs and top and low x)



LQ production at LHC ad LHeC

leptoquarks (LQs) appear in several extensions to SM: production ¢ ~ )\Qq(k;r)
can be scalar or vector, with fermion number 0 (e-gbar) or 2 (e°q)

At LHC, mostly pair production (from gg or qq)

if A not too strong (0.3 or lower), cross section independent on A
Exclude up to 900 GeV for 1° generation

Expect to exclude up to 1.2 (1.5) TeV at 14 TeV 300 fb-! for scalar (vector)-LQ

By L Ry w N L " * At the LHeC: both baryon and lepton

: &ﬂg ‘ "’i e ’mfr , quantum numbers - ideally suited to search
r\@ Ly N _'_Ar'" N T . .

7 N R N % for and study properties of new particles
| . coupling to both leptons and quarks
. Uy 4 N

'\I“W‘ | \;_M’f = == e’ ¥

Reeo| 9 N g
N SETTS La
A A

At the LHC, paw production 15 essentially independent
ofthe LQ-g-¢ coupling A — paiwr production abundant

d o d
» single, resonant production; sensitive to A

Monica D'Onofrio, LHeC Workshop 2015 6/26/2015
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Choice of Baseline Configuration = f(cost,E_,s)

45 Contributions to cost
4
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Tunnels from LHeC LHC FCC

— Cost strongly rising with tunnel circumference. Presently stick to LHeC default.
- Maximise independence of ring installation, design for synchronous ep and pp OP
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Right Handed Currents and Heavy Neutrinos

RHC includes plenty of connected issues

T SuU@®@ Classes of Dependencies
/'Heavy Gauge Bosons (HGB)\->< R
'\\~ w‘z -—/' > E—
Theory
Right-Handed Currents G
. pp—»IIJj+NET
?(yes!) (RHC) LFV., dibosons

N
: Heavy Scalars (HS) |
Heavy Neutrinos (HN) t \ J

( VL )=< Usxs  Vaxn )( v )
Tomasz Jelinsky Rom Talk Nr Xnx3 KRTnxn N



Heavy Neutrino Search at FCC (ee,hh,eh)

Oliver Fischer

Rome Talk g 1000 : | : :
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— The FCCs provide great prospects for discovering the origin of
neutrino masses.

» Future electron-proton colliders provide significant gain in
mass reach and fairly “stable” production cross sections.



Kinematic Range of Acceptance of a 750 GeV Particle coupling to yy (and ZZ?)




Acceptance of a 750 GeV Ghost S
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The 750 GeV Ghost in ep

LHeC FCC-ep

eta(jetl)

forward jet

Initial simulations of the 750 GeV signal and backgrounds (G.Azuelos)

Couplings, Cross Section, Confirmation — three big unknowns ...




Some Remarks

The ep configuration has much to offer by itself and in complementarity
to ee and pp. For the FCC-eh, more studies are under way and need to be
pursued.

The LHeC Study has been the base for FCC-eh also, and time and energy order
need to be imposed by us in order to have clearer what can be gained where.
This will also need to include the HE-LHC configuration which looks good to eh.

Basically: high x may be done by LHeC, but low x and high masses (equivalent)
require FCC-ep

Areas of further study: top, Higgs, BSM If you want to join, please do so

Areas of renewed study: low x, PDFs
Areas of new directions: Heavy neutrinos, BSM Higgs, 750 (if)

Much effort has been put in the detector software and design which needs
to be coupled closer to the physics analyses..

Lots to be done for CDR on LHeC (1034) and FCC,
while eh physics remains fascinating to some of us and useful to everybody



