Longitudinal polarization at TLEP-Z?

Main interest: measure EW couplings at the Z peak most of which provide measurements of \(\sin^2\theta_{\text{lept}}^W = e^2/g^2 (m_z) \)
-- not to be confused with -- \(\sin^2\theta_W = 1- m_w^2/m_z^2 \)

Useful references from the past:
«polarization at LEP» CERN Yellow Report 88-02
Precision Electroweak Measurements on the Z Resonance
GigaZ @ ILC by K. Moenig
Measuring $\sin^2 \theta_W^{\text{eff}} (m_Z)$

\[\sin^2 \theta_W^{\text{eff}} \equiv \frac{1}{4} (1 - g_V/g_A) \]

\[g_V = g_L + g_R \]

\[g_A = g_L - g_R \]

<table>
<thead>
<tr>
<th>$A_{tb}^{0,l}$</th>
<th>0.23099 ± 0.00053</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{tb}(P_T)$</td>
<td>0.23159 ± 0.00041</td>
</tr>
<tr>
<td>$A_{tb}(\text{SLD})$</td>
<td>0.23098 ± 0.00026</td>
</tr>
<tr>
<td>$A_{tb}^{0,b}$</td>
<td>0.23221 ± 0.00029</td>
</tr>
<tr>
<td>$A_{tb}^{0,c}$</td>
<td>0.23220 ± 0.00081</td>
</tr>
<tr>
<td>Q_{tb}^{had}</td>
<td>0.2324 ± 0.0012</td>
</tr>
</tbody>
</table>

Average 0.23153 ± 0.00016

$\chi^2/\text{d.o.f.} = 11.8/5$

\[m_{\text{H}} \quad 10^2 - 10^3 \quad \text{GeV} \]

$\Delta \alpha_{\text{had}}^{(5)} = 0.02781 \pm 0.00036$

$\text{m}_t = 178.0 \pm 4.3 \text{ GeV}$
relations to the well measured

\[G_F \; m_Z \; \alpha_{\text{QED}} \]

at first order:

\[\Delta \rho = \frac{\alpha}{\pi} \left(\frac{m_{\text{top}}}{m_Z} \right)^2 \]

- \[\frac{\alpha}{4\pi} \log \left(\frac{m_h}{m_Z} \right)^2 \]

\[\varepsilon_3 = \cos^2\theta_w \; \frac{\alpha}{9\pi} \log \left(\frac{m_h}{m_Z} \right)^2 \]

\[\delta_{\text{vb}} = 20/13 \; \frac{\alpha}{\pi} \left(\frac{m_{\text{top}}}{m_Z} \right)^2 \]

complete formulae at 2d order including strong corrections are available in fitting codes

e.g. ZFITTER, GFITTER
$A_{fb}^{0,l}$: 0.23099 ± 0.00053

$A_{j}(P_{t})$: 0.23159 ± 0.00041

$A_{j}(SLD)$: 0.23098 ± 0.00026

$A_{fb}^{0,b}$: 0.23221 ± 0.00029

$A_{fb}^{0,c}$: 0.23220 ± 0.00081

Q_{fb}^{had}: 0.2324 ± 0.0012

Average: 0.23153 ± 0.00016

$\chi^2/d.o.f.: 11.8/5$

$\Delta \alpha^{(S)}_{had} = 0.02758 \pm 0.00035$

$m_{t} = 178.0 \pm 4.3$ GeV
Extracting physics from $\sin^2\theta_{\text{lept}}^W$

1. Direct comparison with m_Z

$$\sin^2\theta_{\text{lept}}^W \cos^2\theta_{\text{lept}}^W = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} \ G \ F \ m_Z^2} \cdot \frac{1}{1 + \Delta \rho} \cdot \frac{1}{1 - \frac{E_3}{\Delta \theta_{\text{lept}}^W}}$$

Uncertainties in m_{top}, $\Delta \alpha(m_Z)$, m_H, etc....

$\Delta \sin^2\theta_{\text{lept}}^W \sim \Delta \alpha(m_Z) / 3 \sim 10^{-5}$ if we can reduce $\Delta \alpha(m_Z)$ (see P. Janot)

2. Comparison with m_w/m_Z

Compare above formula with similar one:

$$\sin^2\theta_w \cos^2\theta_w = \frac{\pi \alpha (M_Z^2)}{\sqrt{2} \ G \ F \ m_Z^2} \cdot \frac{1}{1 - \left(-\frac{\cos^2\theta_w}{\sin^2\theta_w} \Delta \rho + 2 \frac{\sin^2\theta_w}{\sin^2\theta_w} \varepsilon_3 + \frac{\varepsilon_1^2 - \varepsilon_2^2}{\varepsilon_3} \varepsilon_2 \right)}$$

Where it can be seen that $\Delta \alpha(m_Z)$ cancels in the relation.

The limiting error is the error on m_w.

For $\Delta m_w = 0.5 \text{ MeV}$ this corresponds to $\Delta \sin^2\theta_{\text{lept}}^W = 10^{-5}$
Assume for now ONE experiment at ECM=91.2

Luminosity «baseline» with beta*=1mm : 2.1 \(10^{36}\)/cm\(^2\)/s = 2 pb\(^{-1}\)/s,
Sigma_had = 31 \(10^{-33}\)cm\(^2\) \(\rightarrow\) 6.5 \(10^{11}\) qq events/10\(^7\) year/exp.

Consider 3 years of 10\(^7\) s
2 \(10^{12}\) Z\(\rightarrow\) qq events (typical exp at LEP was 4.10\(^6\))
4 \(10^{11}\) Z\(\rightarrow\) bb
10\(^{11}\) Z\(\rightarrow\) \(\mu\mu\), \(\tau\tau\) each
Will consider today the contribution of the Center-of-mass energy systematic errors

Today: step I, compare
ILC measurement of A_{LR} with $10^9 Z$ and $P_{e^-}=80\%, P_{e^+}=30\%$

FCC-ee measurement of $A_{FB}^{\mu\mu}$ and $A_{FB}^{pol}(\tau)$ with $2.10^{12} Z$
Both measure the weak mixing angle as **defined** by the relation

\[A_\ell = \frac{\left(g_e^L \right)^2 - \left(g_e^R \right)^2}{\left(g_e^L \right)^2 + \left(g_e^R \right)^2} \]

with \(g_e^L = \frac{1}{2} \sin^2 \theta_{\text{lept}}^W \) and \(g_e^R = -\sin^2 \theta_{\text{lept}}^W \)

\[A_{\text{LR}} = A_e \]

\[A_{\text{FB}}^{\mu\mu} = \frac{3}{4} A_e A_\mu = \frac{3}{4} A_\ell^2 \]

A\text{FB}^{\mu\mu} is measured using muon pairs (5% of visible Z decays) and unpolarized beams

A\text{LR} is measured using all statistics of visible Z decays with beams of alternating longitudinal polarization

both with very small experimental systematics

parametric sensitivity

\[\frac{dA_{\text{FB}}^{\mu\mu}}{d\sin^2 \theta_{\text{lept}}^W} = 1.73 \quad \text{vs} \quad \frac{dA_{\text{LR}}}{d\sin^2 \theta_{\text{lept}}^W} = 7.9 \]

sensitivity to center-of-mass energy (w.r.t. \(m_Z \)) is larger for **A\text{FB}^{\mu\mu}**

\[\frac{\partial A_{\text{FB}}^{\mu\mu}}{\partial \sqrt{s}} = 0.09/\text{GeV} \quad \text{vs} \quad \frac{\partial A_{\text{LR}}}{\partial \sqrt{s}} = 0.019/\text{GeV} \]

“an 80 MeV uncertainty in Ecm corresponds to a 1% error on A_{\text{LR}}” (relative error)

But of course **A\text{FB}^{\mu\mu}** benefits from much larger statistics and Ecm precision of circular collider
Most sensitive observable is A_{LR}, so only this is discussed

$$A_{LR} = \frac{1}{\mathcal{P}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e = \frac{2v_e a_e}{\nu_e^2 + a_e^2}$$

$v_e/a_e = 1 - 4 \sin^2 \theta_{eff}^l$

independent of the final state

Statistical error with 10^9 Zs: $\Delta A_{LR} = 4 \cdot 10^{-5}$

(for $\mathcal{P}_{e^-} = 80\%$, $\mathcal{P}_{e^+} = 0$)

Crucial ingredient: polarisation measurement

Error from polarisation: $\Delta A_{LR}/A_{LR} = \Delta \mathcal{P}/\mathcal{P}$

- only electron polarisation with $\Delta \mathcal{P}/\mathcal{P} = 0.5\% \Rightarrow \Delta A_{LR} = 8 \cdot 10^{-4}$
 (Still factor three to SLD, but few million Zs are sufficient)
Measurement of A_{LR}

- Electron bunches: 1 \leftrightarrow 2 \equiv 3 \equiv 4
- Positron bunches: 1 \equiv 2 \Rightarrow 3 \equiv 4
- Cross sections: σ_1, σ_2, σ_3, σ_4
- Event numbers: N_1, N_2, N_3, N_4

\[
\begin{align*}
\sigma_1 &= \sigma_u (1 - P^- c \Lambda_{LR}) \\
\sigma_2 &= \sigma_u (1 + P^+ c \Lambda_{LR}) \\
\sigma_3 &= \sigma_u \\
\sigma_4 &= \sigma_u [1 - P^+ c P^- c + (P^+ c - P^- c) \Lambda_{LR}]
\end{align*}
\]

Verifies polarimeter with experimentally measured cross-section ratios

Statistics:

- $\Delta A_{LR} = 0.0025$ with about $10^6 Z^0$ events,
- $\Delta A_{LR} = 0.000015$ with $10^{11} Z$ and 40% polarization in collisions.

$\Delta \sin^2 \theta_{w^{\text{eff}}}^{\text{(stat)}} = O(2 \cdot 10^{-6})$
• with positron polarisation $\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} + \mathcal{P}_{e^-}}$

\Rightarrow gain a factor four for $\mathcal{P}_{e^-}/\mathcal{P}_{e^+} = 80\%/60\%$ due to error propagation (even when error is 100% correlated between the polarimeters the gain is a factor three)

• even better with Blondel scheme:

$$\sigma = \sigma_u [1 - \mathcal{P}_{e^+}\mathcal{P}_{e^-} + A_{LR}(\mathcal{P}_{e^+} - \mathcal{P}_{e^-})]$$

$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{--} - \sigma_{+-} - \sigma_{-+})(-\sigma_{++} + \sigma_{--} - \sigma_{+-} + \sigma_{-+})}{(\sigma_{++} + \sigma_{--} + \sigma_{+-} + \sigma_{-+})(-\sigma_{++} + \sigma_{--} + \sigma_{+-} - \sigma_{-+})}}$$

can measure A_{LR} independent from polarimeters with very small loss in precision and only 10% of the luminosity on the small cross sections

Conclude that $\Delta \sin^2 \theta_{\text{lept}}^W \sim 10^{-5}$
Will consider two sources of errors

-- statistics
-- uncertainty on center-of-mass energy (relative to the Z mass)

main inputs taken from
arXiv:hep-ex/0509008v3 precision measurements on the Z resonance

there are other uncertainties but they are very small for A_{FB}
This is a lower limit estimate for A_{LR}; the systematics related to knowledge of
the beam polarization (80% for e-, 30% for e+) should also be taken into account
<table>
<thead>
<tr>
<th></th>
<th>$A_{FB}^{\mu\mu}$ @ FCC-ee</th>
<th>A_{LR} @ ILC</th>
</tr>
</thead>
<tbody>
<tr>
<td>visible Z decays</td>
<td>10^{12}</td>
<td>10^{9}</td>
</tr>
<tr>
<td>muon pairs</td>
<td>10^{11}</td>
<td>90%</td>
</tr>
<tr>
<td>$\Delta A_{FB}^{\mu\mu}$ (stat)</td>
<td>3×10^{-6}</td>
<td>4.2×10^{-5}</td>
</tr>
<tr>
<td>ΔE_{cm} (MeV)</td>
<td>0.1</td>
<td>2.2</td>
</tr>
<tr>
<td>$\Delta A_{FB}^{\mu\mu} (E_{CM})$</td>
<td>9.2×10^{-6}</td>
<td>4.1×10^{-5}</td>
</tr>
<tr>
<td>$\Delta A_{FB}^{\mu\mu}$</td>
<td>1.0×10^{-5}</td>
<td>5.9×10^{-5}</td>
</tr>
<tr>
<td>$\Delta \sin^{2}\theta_{W}$</td>
<td>5.9×10^{-6}</td>
<td>7.5×10^{-6}</td>
</tr>
</tbody>
</table>

$\Delta \sin^{2}\theta_{W}$ from $A_{FB}^{\mu\mu}$

- LEP: 2.1×10^{-7}
- SLC: 5.1×10^{-5}
- W.A.: 1.6×10^{-4}

$\Delta \alpha = 0.00035$ (NLO)
The forward backward tau polarization asymmetry is very clean. Dependence on E_{CM} same as A_{LR} negl.

ALEPH data 160 pb$^{-1}$ (80 s @ FCC-ee !)

Already at systematic level of 5×10^{-4} 6 10^{-5} on much improvement possible by using dedicated selection e.g. tau\rightarrow π ν to avoid had. model

![Graph of Measured P_τ vs $\cos\theta_\tau$]

Figure 4.7: The values of P_τ as a function of $\cos\theta_\tau$ as measured by each of the LEP experiments. Only the statistical errors are shown. The values are not corrected for radiation, interference or pure photon exchange. The solid curve overlays Equation 4.2 for the LEP values of A_τ and A_e. The dashed curve overlays Equation 4.2 under the assumption of lepton universality for the LEP value of A_e.

<table>
<thead>
<tr>
<th>Source</th>
<th>δA_τ</th>
<th>δA_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>DELPHI</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0007</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>0.0011</td>
<td>0.0003</td>
</tr>
<tr>
<td>L3</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0007</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>OPAL</td>
<td>0.0012</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>0.0010</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>0.0025</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Table 4.2: The magnitude of the major common systematic errors on A_τ and A_e by category for each of the LEP experiments.
Concluding remarks for today:

1. The Energy uncertainty on the muon Forward Backward uncertainty in FCC-ee is < that encurred in LC for A_LR measurement

2. At FCC-ee the Forward backward asymmetry for muons and the tau polarization FB asymmetry should give a result at least as good as that given by ALR at ILC with GIGAZ

3. All exceeds the theoretical precision from $\Delta\alpha(m_Z)$ or the comparison with m_W
 But this precision on $\Delta\sin^2\theta^\text{lep}_W$ can only be exploited at FCC-ee!

3. from A_{FB}^b we should extract the b-quark couplings, not the lepton coupling
 IF there is a case for longitudinal polarization it should come from this.
\[A_{\text{fb}}^{0,l} = 0.23099 \pm 0.00053 \]
\[A_{\text{fb}}^{0,b} = 0.23221 \pm 0.00029 \]
\[A_{\text{fb}}^{0,c} = 0.23220 \pm 0.00081 \]
\[Q_{\text{had}} = 0.2324 \pm 0.0012 \]

Average:
\[\sin^2 \theta_{\text{eff}} = 0.23153 \pm 0.00016 \]
\[\chi^2 / \text{d.o.f.} = 11.8 / 5 \]

\[m_h = 178.0 \pm 4.3 \text{ GeV} \]
Going through the observables

the weak mixing angle as defined by the relation

\[A_\ell = \frac{2 g_V^e g_A^e}{(g_V^e)^2 + (g_A^e)^2} = \frac{(g_L^e)^2 - (g_R^e)^2}{(g_L^e)^2 + (g_R^e)^2} \]

with \((g_L^e) = \frac{1}{2} - \sin^2 \theta_{\text{lept}}^W\) and \((g_R^e) = -\sin^2 \theta_{\text{lept}}^W\)

\[A_\ell \approx 8(1/4 \cdot -\sin^2 \theta_{\text{lept}}^W) \text{ very sensitive to } \sin^2 \theta_{\text{lept}}^W ! \]

\[A_{LR} = A_e \text{ measured from } (\sigma_{\text{vis},L} - \sigma_{\text{vis},R}) / (\sigma_{\text{vis},L} + \sigma_{\text{vis},R}) \]

(\text{Total visible cross-section had } + \mu \mu + \tau \tau \text{ (35 nb) for 100% Left Polarization})

\[A_{FB}^{\mu \mu} = \frac{3}{4} A_e A_\mu = \frac{3}{4} A_\ell^2 \]

\[G_{Vf} = \sqrt{R_f} \left(T_3^f - 2 Q_f K_f \sin^2 \theta_W \right) \]

\[G_{Af} = \sqrt{R_f} T_3^f \]

\[A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \]

\[A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \frac{1}{\langle |P_e| \rangle} \]

\[A_{LRFB} = \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} \frac{1}{\langle |P_e| \rangle} \]

\[A_{FB}^{0 \mu} = \frac{3}{4} A_e A_f \]

\[A_{LR}^{0} = A_e \]

\[A_{LRFB}^{0} = \frac{3}{4} A_f \]

\[\langle P_{\tau}^{0} \rangle = -A_{\tau} \]

\[A_{FB}^{\text{pol},0} = -\frac{3}{4} A_e. \]