Comparison of magnet designs from a circuit protection point of view

Arjan Verweij, CERN, TE-MPE

with input from M. Prioli, R. Schmidt, and A. Siemko

A. Verweij, FCC week 11-15 April 2016

Reminder

Sept 2008: damage caused in the LHC by 0.6 GJ stored energy

The stored energy of all main dipoles in the FCC is about 200 GJ. \Rightarrow Circuit protection is extremely important

A. Verweij, FCC week 11-15 April 2016

Intro

The FCC main dipole magnets have to be powered in strings, and the magnet design has therefore a strong impact on the protection and configuration of the string.

The following magnet designs are compared from a circuit protection point of view:

- **Cos-** θ , INFN, EuroCirCol collaboration
- Block, CEA, EuroCirCol collaboration
- Common coil, CIEMAT, EuroCirCol collaboration
- **Block**, LBNL

Quench protection of the magnet itself (mainly characterised by the hot-spot temperature and maximum voltage-to-ground is not discussed here.

(see presention T. Salmi).

Typical powering of the dipole circuit

Magnets are powered in series and each magnet has a **bypass diode** to decouple the current decay of a *quenching* magnet from the current decay of the circuit.

 N_{EE} energy extraction (EE) systems, each with a resistor R_{EE} , are present, equally spaced along the circuit, to ensure a sufficiently fast decay of the circuit current in case of a Fast Power Abort (FPA) triggered by a quench/trip.

Quench/trip ⇒ Fast Power Abort (FPA)

- the power converter is switched off,
- the switches of the EE system(s) are opened,
- quench heaters (or CLIQ) are activated,
- the current in the quenching magnet(s) transfers into the bypass diode,
- the voltage over the quenching magnet(s) equals the forward voltage of the bypass diode,
- the circuit current decays 'exponentially' with $\tau_{circ} = L_{circ} / (N_{EE} * R_{EE})$,

Required voltage withstand level

For a circuit with grounding in the centre of the EE resistor, the maximum voltage-toground *without faults* equals:

$$V_{\text{gnd,max}} = V_{\text{Q,max}} + V_{\text{FPA,max}} = V_{\text{Q,max}} + 0.5^* I^* R_{\text{EE}}$$

 $V_{\rm Q,max}$ is given by the layout of the coils and magnet protection system.

(see presentation T. Salmi)

Fault scenario's (for a circuit with one or two EE systems):

- Malfunctioning of part of the magnet protection can give an increased $V_{Q,max}$. \geq
- An intermittent short (before the circuit fuse blows) could give: \geq

 $V_{\text{FPA,max,fault}} = I^* R_{\text{EE}} + N_{\text{mag}}^* V_{\text{diode}} / N_{\text{EE}}$

(private comm. E. Ravaioli)

 $N_{\rm mag}$: the number of magnets in the circuit V_{diode} : the opening voltage of the cold bypass diode (6 V).

A safe **voltage withstand level** of the circuit is:

 $VWL = f^* (V_{Q,max} + V_{FPA,max,fault})$ with *f* a safety margin (for example *f*=1.2)

Circuit configuration

In general it is preferable to reduce the number of circuits \Rightarrow less power converters, warm busbars, electrical Distribution Feed Boxes (DFB), and current leads.

For a circuit one would like to reduce:

- > current in the circuit
- \succ V_{PC} and P_{PC}
- ramping time
- > V_{FPA,max}
- > τ_{circ}
- > dimensions cold busbars
- > number of EE systems
- current rating of EE systems
- stored energy per circuit
- > heating in the bypass diode

- \rightarrow smaller size DFB & current leads, lower cost PC
- \rightarrow lower cost and smaller size of the converter
- \rightarrow increased availability for beam physics
- \rightarrow reduced voltage withstand level
- \rightarrow faster cryo recovery, less quench propagation
- \rightarrow 'easier' layout inside the cryostats
- \rightarrow lower cost, less maintenance, lower heat inleak
- \rightarrow lower cost, smaller size
- \rightarrow reduced risk in fault scenario's
- \rightarrow smaller diode heat sinks, faster cryo recovery

And of course, the EE systems and PC's should be located in easily accessible areas.

Unfortunately, many of these demands are contradictory...

Strategy for circuit configuration

- 1. Locate power converters and EE systems in the access points.
- 2. Subdivide each Powering Sector in N circuits \Rightarrow 20N circuits for the entire machine
- 3. Power both apertures of the dipoles in series, independently from the quads.
- 4. Power the circuits via a superconducting link.
- 5. Use one EE system per circuit, located near the converter.

FCC magnet designs (B_{nom}=16 T, 14.3 m)

Description	Cos-θ [1]	Block [2]	Common Coil [3]	Block - LBNL [4]	Units
Nr of turns per aperture	230	306	394 [5]	92	-
Current @ nominal field	10.275	8.47	9.03	25.8	[kA]
Inductance (double aperture)	734	1264	1824	120	[mH]
Stored energy at nominal (double aperture)	39	45	74	40	[MJ]

[1] G. Bellomo, P. Fabbricatore, S. Farinon, V. Marinozzi, M. Sorbi, G. Volpini, INFN, Version 28b-38 v5, Minutes EuroCirCol WP 5 meetings.

[2] C. Lorin, M. Dunante, CEA/IRFU, Version v26cmag, Minutes EuroCirCol WP 5 meetings

[3] T. Martinez, J. Munilla, F. Toral, CIEMAT, Version v1h_intgrad, Minutes EuroCirCol WP 5 meetings.

[4] G.L. Sabbi et al, "Design study of a 16 T Block-Dipole for FCC", EUCAS 2015.

[5] Total for a double aperture divided by 2

Assuming 2x larger stored energy with same current

Same:

- cable
- circuit
- ramp time
- nr of EE systems (N_{EE})

V_{FPA,max}

	Circuit powering
L _{circ}	2x larger
V _{PC}	2x larger
P _{PC}	2x larger
Awarm-leads	equal
A _{current-leads}	equal

High priority: Minimize stored energy

Assuming <u>2x larger cable</u> (half number of turns) with <u>same</u> stored energy

Same:

- circuit
- ramp time
- nr of EE systems ($N_{\rm EE}$)
- V_{FPA,max}

	Circuit powering
I _{nom}	2x larger
L _{circ}	4x smaller
V _{PC}	2x smaller
P _{PC}	equal
A _{warm-leads}	larger
A _{current-leads}	larger

	Magnet protection
L _M	4x smaller
MIIts	4x larger
V _{Q,max}	smaller
T _{hot}	equal
	Circuit protection
E _{circ}	equal
τ_{circ}	2x smaller
A _{busbar}	√2x larger
Q _{diode}	equal
EE switch	2x higher current rating
EE dump	equal

Not obvious what is preferable:

Low- I_{nom} & High-L_M versus High- I_{nom} & Low- L_M

Are there hard limits for the magnet design?

A string of magnets can *always* be protected, for any magnet design and given constraints (voltage withstand level, τ_{circ} , ...), by adapting the number of circuits, so by subdividing a powering sector in multiple circuits.

Magnet powering:

Trade-off between:

Number of circuits Converter voltage rating (V_{PC}) Ramp time (t_{ramp})

Circuit protection

Trade-off between:

Number of circuits τ_{circ} (busbar & diode size & quench propagation) $V_{FPA,max}$

Layouts for the EuroCirCol Cos- θ design

				()		
Nr of circuits per half-arc	1	2	3	4	4	8
Nr of circuits entire FCC	20	40	60	80	80	160
Magnets per circuit	215	113	72	54	54	27
Inductance per circuit [H]	158	79	53	39	39	20
Stored energy per circuit [GJ]	8.3	4.2	2.8	2.1	2.1	1.1
Ramp time [min]	20	20	20	20	20	20
$V_{\rm PC}$ [V]	1350	676	450	338	338	169
$V_{\rm FPA,max}$ [kV]	1	1	1	1	0.5	0.5
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.6	2.4	2.3	1.3	1.2
$\tau_{\rm circ}$ [s]	810	405	270	203	405	203
A _{busbar} [mm ²]	539	387	316	273	387	273
Q_{diode} [MJ]	8.3	4.2	2.8	2.1	4.2	2.1

Layouts for the EuroCirCol Block design

Nr of circuits por half-arc	1	2	4	6	6	12
Nr of circuits entire FCC	20	40	80	120	120	240
Magnets per circuit	215	108	54	36	36	18
Inductor concerned in a singuit [11]	215	100	J4 69	50 45	50 45	10
Inductance per circuit [H]	212	130	08	45	45	23
Stored energy per circuit [GJ]	9.7	4.9	2.4	1.6	1.6	0.8
Ramp time [min]	20	20	20	20	20	20
$V_{\rm PC}$ [V]	1920	960	480	320	320	160
$V_{\rm FPA,max}$ [kV]	1	1	1	1	0.5	0.5
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.6	2.3	2.2	1.2	1.1
$\tau_{\rm circ} [s]$	1150	575	288	192	384	192
A _{busbar} [mm ²]	538	380	269	220	310	220
Q_{diode} [MJ]	9.7	4.9	2.4	1.6	3.2	1.6

Layouts for the EuroCirCol Common coil design

Nr of circuits per half-arc	1	4	6	8	8	12
Nr of circuits entire FCC	20	80	120	160	160	240
Magnets per circuit	215	54	36	27	27	18
Inductance per circuit [H]	392	98	65	49	49	33
Stored energy per circuit [GJ]	16	4	2.7	2	2	1.3
Ramp time [min]	20	20	20	20	20	20
$V_{\rm PC}$ [V]	2950	740	492	370	370	246
$V_{\rm FPA,max}$ [kV]	1	1	1	1	0.5	0.5
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.3	2.2	2.2	1.2	1.1
$\tau_{\rm circ}$ [s]	1770	443	295	221	443	295
A _{busbar} [mm ²]	710	355	290	251	355	290
$Q_{\rm diode}$ [MJ]	16	4	2.7	2	4	2.7

Layouts for the LBNL Block design

Nr of circuits per half-arc	1	2	3	4	4	8
Nr of circuits entire FCC	20	40	60	80	80	160
Magnets per circuit	215	108	72	54	54	27
Inductance per circuit [H]	26	13	8.6	6.5	6.5	3.2
Stored energy per circuit [GJ]	8.6	4.3	2.9	2.1	2.1	1.1
Ramp time [min]	20	20	20	20	20	20
$V_{\rm PC}$ [V]	555	277	185	139	139	69
$V_{\rm FPA,max}$ [kV]	1	1	1	1	0.5	0.5
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.6	2.4	2.3	1.3	1.2
$\tau_{\rm circ}$ [s]	333	166	111	83	166	83
A _{busbar} [mm ²]	880	622	508	440	622	440
$Q_{\rm diode}$ [MJ]	8.6	4.3	2.9	2.1	4.3	2.1

Conclusion 1/2

- Magnet designers should try to minimize the stored energy. Cos-θ and block designs have clear advantages as compared to the common-coil design.
- Subdivision of a 4 km long half-arc in several dipole circuits seems the most feasible solution for proper circuit protection within the required constraints, while at the same time having all converters and EE systems at the access points (using a SC link).
- > Assuming t_{ramp} =20 min, $V_{FPA,max}$ =1 kV, τ_{circ} ≈200 s, gives:

	Cos-θ	Block	Common coil	LBNL block
Nominal current [kA]	10.275	8.47	9.03	25.8
Nr of circuits	80	120	160	40

Changing t_{ramp} (10-30 min) affects the rating of the converters (V_{PC} and P_{PC}) but not the number of circuits.

Conclusion 2/2

- High voltage withstand levels of the circuits and all its components are needed to reduce the number of circuits and hence reduce the complexity of the layout.
- High-current low-inductance magnets are favourable in terms of quench voltage and number of circuits, which seem to outweigh the drawbacks (larger busbars, larger diode heat sink, larger current rating for the converters and current leads).
- > I suggest to design several $\cos -\theta$ and block dipoles with the usual EuroCirCol requirements, but with $I_{nom} = 15-25$ kA.
- The possibility of independent powering of the dipole apertures, each in series with a RQD/F circuit, should be explored from optics point-ofview. This might significantly reduce the number of busbars, power converters, DFB's, and current leads.

