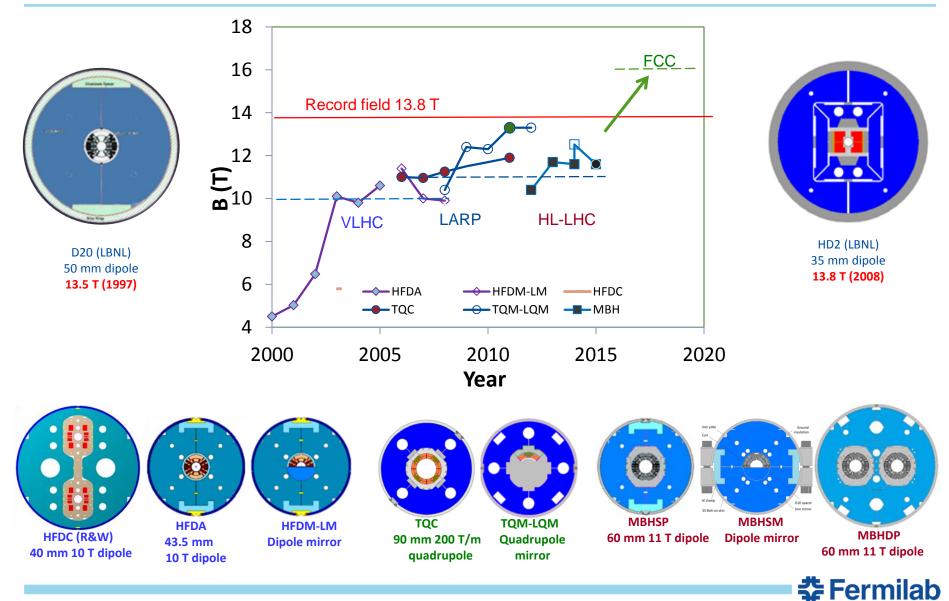


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Development of 60-mm aperture 15-16 T Nb₃Sn dipole at Fermilab

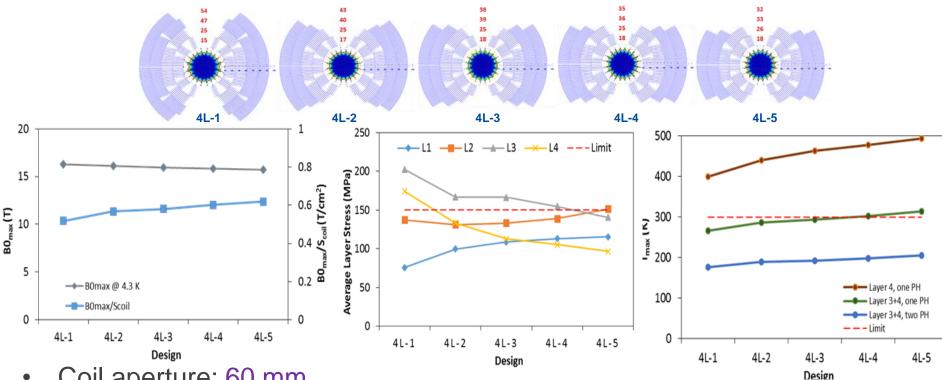

E. Barzi, A.V. Zlobin FCC meeting in Rome 11-15 April 2016

Premise

- In the plenary talk «The Steps Towards 16 T FCC Magnets» we heard two contrasting messages: on one hand, the speaker stressed how complex of a technology Nb3Sn is, on the other flat coils without aperture producing 16 T on the conductor were considered representative of the technology.
- In accordance to the clear concept presented by Fabiola Gianotti in her plenary talk, we should focus in developing/producing systems ready for implementation and operation → i.e. A magnet is a system for beam bending/focusing and of course should have (at least) one aperture.
- The present magnet statistics show that Bruce is right when he speaks of a «14 T brick wall» for Nb3Sn magnets.

Program Timeline

3 Development of 60-mm aperture 15 T Nb3Sn dipole at FNAL

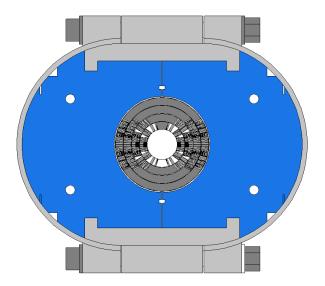

Current HFM R&D Program

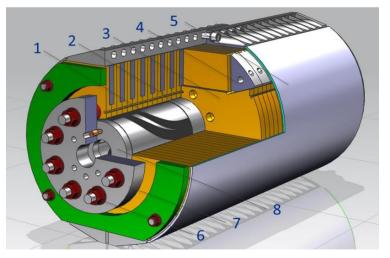
- As a part of the National HFM collaboration develop <u>accelerator magnets</u> with <u>world record</u> parameters
 - Small-aperture 15-16 T Nb₃Sn dipole suitable for VHEppC (phase I)

🛟 Fermilab

- background field for small 1-2 T HTS inserts
- Large-aperture 15 T Nb₃Sn dipole with stress management (phase II)
 - background field for 5+ T HTS inserts
- Magnet cost optimization
- Superconductor and structural material R&D for 15-20 T accelerator magnets
 - Nb₃Sn composite wires
 - Large Rutherford cables

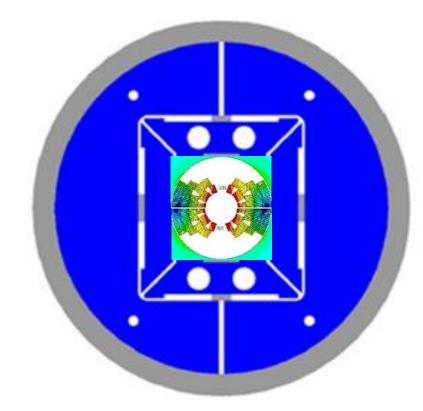
Coil Design Study


- Coil aperture: 60 mm
- Coil cross-section: modified cosθ,4 layers, graded
- Design parameters: B_{max}, field quality, coil volume, azimuthal stress, quench protection
- Design choice: 4L-5


12/09/2015

🛟 Fermilab

Mechanical Structure


- Thin coil-yoke spacer (no collar)
- 2-piece vertically split yoke
- Yoke clamp
 - Stainless steel C-clamps (v.1)
 - this approach with AI clamps was used in previous FNAL magnets
 - Aluminum I-clamps (v.2)
- Skin
 - Bolted skin from 11 T dipole (v.1)
 - New thick bolted or welded skin (v.2)
- Cold mass OD<610 mm
 - VMTF Dewar limit
- Axial support
 - Thick SS rods and end plates

Use of HD2 or HQ structure

Pole key Loading keys

- 45-mm HD2:
 - cold mass OD=705 mm
 - Al shell thickness 40 mm

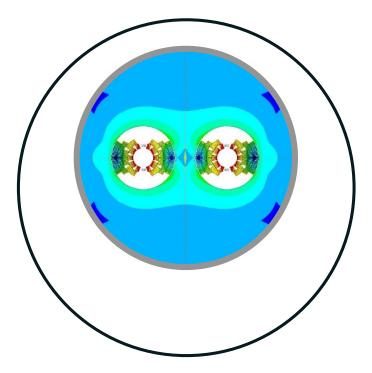
- 120-mm HQ:
 - cold mass OD= 570 mm
 - Al shell thickness 25 mm

Magnet Design Parameters at 4.3 K

Parameter	Units	v.2
Bore field at short sample limit	Т	15.61
Peak field at short sample limit	Т	16.25
Current at short sample limit, I _c	kA	11.34
Inductance at I _c	mH/m	25.61
Stored energy at I _c	MJ/m	1.65
Horizontal Lorentz force per quadrant at I _c	MN/m	7.36
Vertical Lorentz force per quadrant at \mathbf{I}_{c}	MN/m	-4.50

J_c(12T, 4.2K)=2500 A/mm²

	B / G (T) / (T/m)	B _{peak} (T)	Bore (mm)	Length (units x m)
MB	16	16.4	50	4500 x 14.3
MQ	450	13	50	800 x 6
MQX	225	13	100	
D1	12	13	60	4x2 x 12
D2	10	10.5	60	4x3 x 10


Inter-aperture distance $\approx 250 \text{ mm}$ Yoke diameter $\leq 700 \text{ mm}$ Stray field $\leq 100 \text{ mT}$

FNAL dipole parameters are close to MB and also D1, D2

Fermilab

FNAL Dipole coils in 2-in-1 configuration (MB)

1 m OD "cryostat" envelope

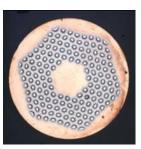
Number of apertures	2
Aperture(mm)	60
Aperture spacing (mm)	250
Coil current (kA)	11.1
Operating temperature (K)	4.3
Max bore field at 4.3 K (T)	16.4
Max coil field at 4.3 K (T)	16.9
Yoke ID (mm)	190.8
Yoke OD (mm)	650

Operation margin can be increased by using wires with higher $\rm J_{c}$ or operation at 1.9 K

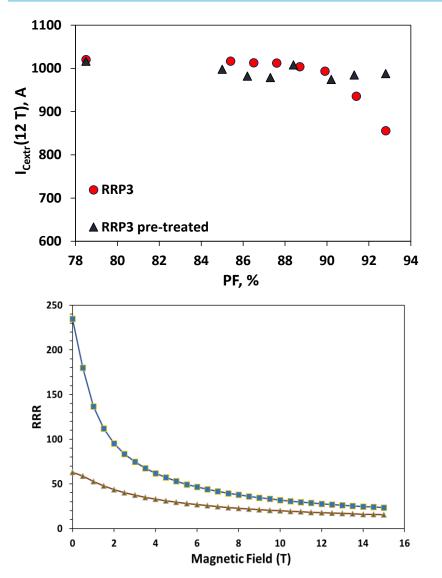
10 Development of 60-mm aperture 15 T Nb3Sn dipole at FNAL

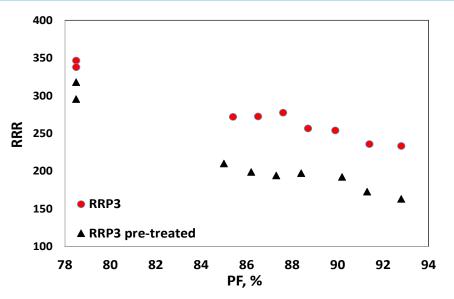
04/13/2016

Fermilab


Strand and Cable

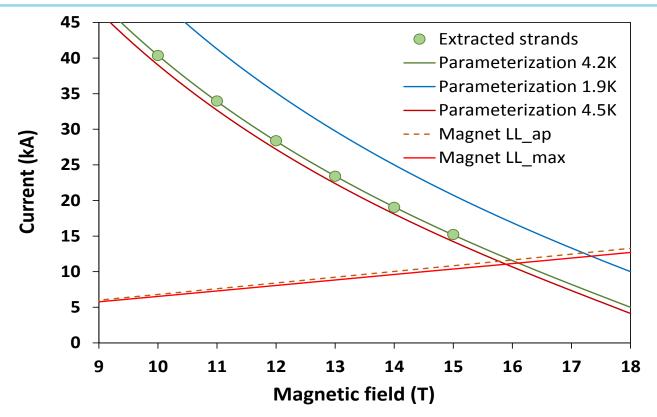
- Outer coil (layer 3 and 4)
 - Cable: Rutherford-type, 40-strands, 11mm wide 0.025 mm thick SS core
 - Strand: 0.7 mm RRP108/127
 - Cable available from 11 T Dipole program
- Inner coil (layer 1 and 2)
 - Cable: Rutherford-type, 28-strands, 11mm wide 0.025 mm thick SS core
 - Strand: 1.0 mm RRP150/169
 - ~450 m long cable piece is available
- Cable insulation
 - E-glass tape
 - 12.7mm wide 0.075 mm thick
 - 2 layers with ~50% overlap


RRP150/169



Cable performance optimization

- Cable PF~87%
- I_c degradation <4%
- RRR retention ~60-85%
- RRR at 15 T ~ always 20-30

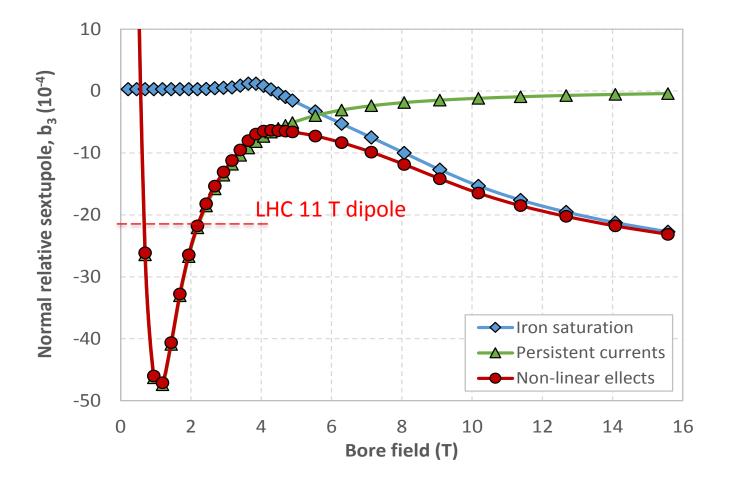

A Prospectus of Parameters Effect on Stability

10000 ■ RRR > 60 J_{s} (4.2K) vs. subelement size for **RRP**® round • RRR < 60 wires of 0.5 to 1 8000 mm J_s (4.2 K), A/mm² 000 000 diameter. The samples in the RRR<60 set had RRR values down to 11 and *J_c(12T,4.2K)* between 2.45 and 2.92 kA/mm². The samples in the RRR>60 set had RRR values up to 4000 and $J_{c}(12T, 4.2K)$ 300 between 2.38 and 3.13 kA/mm^2 . 2000 40 50 60 70 100 30 80 90 110 Subelement size, µm

"Research and Development of Nb₃Sn Wires and Cables for High-Field Accelerator Magnets", Emanuela Barzi, Alexander V. Zlobin, REVIEW paper on PAC 50th anniversary issue, <u>IEEE</u> <u>Transactions on Nuclear Science</u>:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7410112&newsearch=true&queryText =2500440

Magnet Short Sample Limit



Magnet short sample estimated based on the cable test data:

🛟 Fermilab

- 11.1 kA (B_{ap}=15.3 T) at 4.5 K
- 12.2 kA (B_{ap}=16.7 T) at 1.9 K

Coil magnetization and iron saturation

Coil magnetization effect was calculated using RRP-150/169 1 mm strand and RRP-108/127 0.7 mm strand parameters

15 Development of 60-mm aperture 15 T Nb3Sn dipole at FNAL

04/13/2016

🛟 Fermilab

RRP Strand R&D (with OST)

- Goal: increase $J_c(15T)$ with an ultimate target of 2000 A/mm² for a 169 stack strand at 1.0 mm (D_s ~58 µm)
 - the present subelement design average $J_c(15T)$ ~1500 A/mm²
- Approach: modifications to the subelement designs
- Chemical optimization
 - Produce a half height high-J_c subelement billet having Nb and Nb-Ti filaments with a Nb-Ta diffusion barrier
 - Deliver ~45 kg of 1 mm wire
- Local Area Ratio (LAR) optimization
 - Produce two half height high-J_c subelement billets having Nb and Nb-Ti filaments with variable LAR from annulus to barrier

🔁 Fermilab

- Deliver ~90 kg of 1 mm wire
- Wire sample diameter: 0.8, 0.9, 1.0, 1.1 and 1.2 mm
- Next: 1-1.2 mm RRP-217 stack design.

Conclusions

- R&D of 60-mm aperture 15 T Nb₃Sn dipole demonstrator for future HC has started at Fermilab:
 - Magnet design study phase is complete
 - Cable samples for the inner coils were fabricated and tested
 - Practice coils are being presently wound
 - Magnet engineering design is in progress
 - Magnet fabrication and first tests are planned for 2016-2017
 - Schedule is coordinated with CERN FCC Design Study Report
- The work on optimization of Nb₃Sn RRP wires for 15-16 T accelerator magnets continues in collaboration with industry and universities:
 - To produce further J_c increase at 15 T
 - For larger wire D and smaller $\rm D_{eff}$
 - Wire cost reduction through flux pinning enhancement research

🛟 Fermilab