Arc Optics, global Q' correction and emittance variation

Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT)) for the FCC-ee lattice design team

FCC-ee Week 2016 11-15 April 2016 SPONSORED BY THE

Arc Lattice

Courtesy Michael Hauschild

FCC-ee Week 2016 11-15 April 2016

FCC-ee Layout

- 100 km circumference
- 2 IPs / Experiments
- 6 Long Straight Sections
- 2 Extended Straight Sections

FCC-ee Week 2016 11-15 April 2016

Interaction Region

 $\mathfrak{Z}_{x}(m),\ \mathfrak{Z}_{y}(m)$

- 2 IPs
 β* = 1m/2mm
 L* = 2 m
- Optimisation

 of the arc lattice:
 no local CCS
 in the interaction
 regions

FCC-ee Week 2016 11-15 April 2016

Arc FODO cell

Completely symmetric!

Layout already considers space for absorbers, flanges etc.!

FCC-ee Week 2016 11-15 April 2016

Optical functions

FCC-ee Week 2016 11-15 April 2016

Horizontal emittance

Lattices with modified cell length were studied to
 obtain required horizontal emittances

FCC-ee Week 2016 11-15 April 2016

Global Q' correction

Sextupole magnet for LEP

Hall full of LEP magnets waiting to be installed in November 1987

FCC-ee Week 2016 11-15 April 2016

Chromaticity

Change of the tune with energy deviation

• Textbook:
$$\Delta Q = \xi \cdot \Delta p / p$$

• In our case not precise enough: $(\delta = \Delta p / p)$ $Q(\delta) = Q_0 + \frac{\partial Q}{\partial \delta} \delta + \frac{1}{2} \frac{\partial^2 Q}{\partial \delta^2} \delta^2 + \frac{1}{6} \frac{\partial^3 Q}{\partial \delta^3} \delta^3 + \dots$

FCC-ee Week 2016 11-15 April 2016

Natural chromaticity compared

	β* _y = 1 mm	β* _y = 2 mm	ΔQ (δp = 0.1 %, β* _y = 2 mm)
Q _x	503.08	505.08	
Q _x '	-584.26	-587.67	-1.18
Q_x"	-3818.40	-3847.84	-0.01
Q _x ⁽³⁾	-1.43 x 10 ⁸	-1.52 x 10 ⁸	-0.20
Q _x ⁽⁴⁾	1.45 x 10 ¹³	-1.41 x 10 ¹³	-9.40
Q _y	335.14	337.14	
Q _y '	-2059.23	-860.42	-1.72
Q _y "	-4.18 x 10 ⁶	-1.04 x 10 ⁶	-2.09
Q _y (3)	-1.19 x 10 ¹¹	-0.21 x 10 ¹¹	-27.75
Q _y ⁽⁴⁾	-4.53 x 10 ¹⁵	-0.53 x 10 ¹⁵	-351.67

FCC-ee Week 2016 11-15 April 2016

Montague functions

Chromatic variables

$$B = \frac{1}{\beta} \frac{\partial \beta}{\partial \delta} \qquad A = \frac{\partial \alpha}{\partial \delta} - \frac{\alpha}{\beta} \frac{\partial \beta}{\partial \delta} \qquad \text{Final Focus Quad:} \\ A^{\uparrow} \Delta A \cong -\beta_0 \, k_0 \, l_q \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ = \frac{1}{2} \sqrt{A^2 + B^2} e^{i2\psi} \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline \Delta A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \\ \hline A \cong -\beta_0 \, k'_0 \, D_x \, l_s \qquad \text{Sextupole:} \quad h_s \quad h_s$$

Rotates with twice the phase advance!

FCC-ee Week 2016 11-15 April 2016

FCC-ee sextupole scheme

Horizontal plane:2 familiesVertical plane:3 families

$\mu_x = 180^\circ = \pi$ (\rightarrow -I transformation)

FCC-ee Week 2016 11-15 April 2016

W functions in the half-ring

FCC-ee Week 2016 11-15 April 2016

W functions: 0-10 km

FCC-ee Week 2016 11-15 April 2016

Beta functions

Relative energy deviation δp/p = ±0.001

FCC-ee Week 2016 11-15 April 2016

Momentum acceptance

• At 175 GeV beam energy 2 % energy acceptance is required due to energy loss by beamstrahlung at the IP

 \rightarrow Matching of the W functions is not sufficient

• The tune is a function of the energy deviation

$$Q(\delta) = Q_0 + \frac{\partial Q}{\partial \delta} \delta + \frac{1}{2} \frac{\partial^2 Q}{\partial \delta^2} \delta^2 + \frac{1}{6} \frac{\partial^3 Q}{\partial \delta^3} \delta^3 + \dots$$

Modify tune function to increase momentum acceptance by

- Choice of β_y^*
- Modifying the linear chromaticity
- Different sextupole schemes
- Different optimisation methods

Choice of β_{v}^{*}

FCC-ee Week 2016 11-15 April 2016

Optimising the momentum acceptance

FCC-ee Week 2016 11-15 April 2016

Different sextupole schemes

Vary individual sextupole pairs to flatten $Q(\Delta p/p)$

FCC-ee Week 2016 11-15 April 2016

Downhill-Simplex-Optimisation

Algorithm implemented in Fortran calls MAD-X and optimises strengths of 6/6, 12/12 and 54/54 families

Largest momentum acceptance: 6/6 families per plane

Andreas Doblhammer

FCC-ee Week 2016 11-15 April 2016

Summary of the last year

- Sextupole schemes for global Q' correction have been studied systematically
- Methods to increase momentum acceptance have been developed with considerable success!
- Sophisticated sextupole scheme for the arcs is worth to be studied
 - \rightarrow Momentum acceptance has been increased by >5 times
 - \rightarrow Relaxes requirements for the local CCS

Outlook

Interaction region designed by A. Bogomyagkov:

- Combine optimised arcs with local chromaticity correction scheme (CCS)
- Maybe remove local CCS of horizontal plane
- Dynamic aperture studies!

Thank you for your attention!

FCC-ee Week 2016 11-15 April 2016 SPONSORED BY THE

Phase advance FD – 1st Sext.

FCC-ee Week 2016 11-15 April 2016